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1. Introduction 

The production of commodity field crops, including non-durum wheat, canola, and field peas, makes 

a large contribution to the Canadian agricultural economy (Agriculture and Agri-Food Canada, 2022a). 

Beginning in 2019, the COVID-19 pandemic caused major disruptions throughout many global 

agricultural supply chains (Arita et al., 2022; Brewin, 2021; Malone et al., 2021). These challenges were 

further exacerbated by drought and other extreme weather events occurring throughout Canada, 

particularly in 2021 (Statistics Canada, 2021a). Nonetheless, production of principal field crops continues 

to be a significant economic driver for the Canadian agriculture and agri-food sector (Government of 

Canada, 2022).  

A large portion of field crops produced in Canada are exported to international markets, making 

Canada a major contributor to international commodity field crop markets (LMC International, 2020; 

Pulse Canada, 2021; Statistics Canada, 2022a) (LMC International, 2020; Pulse Canada, 2021; Statistics 

Canada, 2022a). Within Canada, much of the production of these crops is concentrated in the Prairie 

provinces (Government of Canada, 2022) and, in particular, the province of Saskatchewan (Agriculture 

and Agri-Food Canada, 2022b). 

On a global scale, international commodity crop markets are increasingly conditioned by evolving 

expectations and requirements regarding sustainability attributes (see, for example, Mazzocchi et al., 

2021; Okpiaifo et al., 2020; Tobi et al., 2019, etc.). This trend is being driven by increasing consumer 

awareness of, and preference for, sustainably sourced food products (Noor et al., 2022; Xie et al., 2021; 

Yadav et al., 2022). As this trend continues, it will become increasingly valuable for agri-food producers 

to develop an in-depth understanding of the environmental impacts of and mitigation opportunities for 

the products they produce, potential priority areas along supply chains to target for sustainability 

improvement efforts, and how their environmental impacts compare to those of their competitors.  

In the context of international field crop markets, there is the potential for large differences in 

environmental impacts per unit of crops produced in different regions throughout the world. These 

differences may be driven by a number of factors, including regional differences in soil, climate, and 

management practices (Abdalla et al., 2016; Kajsa et al., 2019). Field-level nitrous oxide (N2O) emissions 

(a major source of greenhouse gasses (GHGs) in agriculture), for example, may be impacted by the type 

and application method for nitrogenous fertilizers, soil water content, nitrogen availability in soils (Van 

Zandvoort et al., 2017), as well as other management and climate conditions (Hassan et al., 2022; Kuang 

et al., 2021). These differences may be even more pronounced when considering “life cycle” (i.e., supply 
chain) impacts occurring upstream of farm-level production processes. Regional differences in field-level 

fertilizer-use efficiency (Q. Liu et al., 2021), for example, may be compounded by regional differences in 

the impacts characteristic of fertilizer production (Gong et al., 2022; Kakanis, 2021; Ouikhalfan et al., 

2022).  

To support rigorous assessment of, and differentiation between, the environmental impacts of 

internationally traded crop products, it is necessary to use life cycle thinking-based assessment tools 

(Pelletier, 2015). Such tools allow for transparent and reproducible assessment of the cumulative 

resource demands and environmental burdens associated with the complete supply chain of a product 

or service. Among such tools, life cycle assessment (LCA) is the most widely utilized. It has already been 

applied to a number of agri-food production systems both within Canada (Bamber et al., 2022; Dias et 

al., 2017; Pelletier, 2017; Turner et al., 2022, etc.) and internationally (Hietala et al., 2021; Masuda, 
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2016; Pelletier et al., 2014; Schmidt Rivera et al., 2017, etc.). Use of LCA and derivative methods is 

supported by internationally accepted, standardized methodological reference norms, including the 

ISO14040 and 14044 series for LCA (ISO, 2006a, 2006b), and ISO14067 (ISO, 2018) for carbon 

footprinting.    

Currently, it is estimated that one third of total anthropogenic GHG emissions are attributable to 

food systems (Crippa et al., 2021). Within Canada, the agricultural sector is responsible for 8% of total 

direct GHG emissions and a much larger share of “life cycle” (i.e. supply chain) emissions. Direct 
agricultural emissions in Canada have increased 26% over the past thirty years (Flemming et al., 2021). 

Identification of key drivers of GHG emissions within Canadian agriculture, and comparison of emissions 

with those of products from international competitor countries are therefore vital to: (a) developing an 

in-depth understanding of the sustainability challenges facing the Canadian field crop sector, along with 

areas for improvement; and (b) potential opportunities or liabilities with respect to competing on the 

basis of sustainability attributes.  

On this basis, the Government of Saskatchewan and the Global Institute for Food Security (GIFS) 

commissioned a study to enable comparing the carbon footprints of three key crops grown in 

Saskatchewan and other Canadian provinces (canola, non-durum wheat, and dry field peas) to those 

same crops grown by a subset of international competitors (Australia, France, Germany, and the United 

States) on a rigorous, transparent, and methodologically consistent basis. The results of this study will 

be used to support sustainability policy initiatives in both domestic and international contexts. The 

current document reports the methods for and results of this study.   

2. Methods 

Development of carbon footprint models for the crop-region combinations of interest followed a 

staged approach. In brief, stage 1 comprised a data mining and quality assessment exercise to identify 

sufficiently credible/rigorous data to support model development, and to select among available data 

sources. The outcome of stage 1 was a report describing the methods, data sources, and results of the 

data quality assessment and selection process. This report was subsequently shared with the 

Government of Saskatchewan and GIFS (stage 2) for consultation prior to proceeding to the modelling 

stage. Finally, in stage 3, carbon footprint models were developed for each of the crop-region 

combinations, and comparisons made between the GHG emissions associated with each.  

2.1 Crop-region combinations included  

In total, 16 crop country combinations were proposed by the study commissioners for inclusion in 

this analysis (table 1). Specifically, this included canola, non-durum wheat, and field peas grown in 

Saskatchewan, Canada (average including Saskatchewan), Australia, France, Germany, and the U.S. 

These combinations were selected by the Government of Saskatchewan because they represent priority 

field crops (i.e., on the basis of value and volume) for comparison with international competitors. In 

2020, Canada was the largest producer of each of these three crops across all of the regions considered 

except for non-durum wheat production, of which the U.S. produced the most (table 2). Estimates of 

non-durum wheat production are not available for France and Germany as neither data provided by 

FAOstat (2021) nor made available through each countries’ respective national statistical offices 

(Destatis, 2022; INSEE, 2022) separate estimates of durum- and non-durum wheat production. However, 

Groth et al. (2020) indicate that production of durum wheat in Germany is limited and that 

approximately 80% of durum wheat in Germany is imported. Similarly, 5 year average data from 2012-
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2016 indicate that durum wheat production in France averages approximately 1.91 million tonnes, 

representing about 5% of wheat produced in France during the same time period (FAOstat, 2021; 

FranceAgriMer and Arvalis, 2017).   

An additional differentiation of importance is between spring and winter wheat. Spring and winter 

wheat differ in terms of when seeds are sown and grain is harvested. Spring wheat is sown in spring, and 

grain is harvested in the fall, whereas winter wheat seeds are sown in the fall and grain is harvested in 

the subsequent spring/summer. In Canada, the majority of non-durum wheat produced (i.e., ~90%) is 

spring wheat (Statistics Canada, 2022b). In Australia, the majority of wheat produced is also spring 

wheat, although there is increasing interest in production of winter wheat due to the rising frequency of 

drought conditions in the fall in Australia (Cann et al., 2019; Shackley et al., 2022). In contrast, spring 

wheat represents only ~25% of U.S. wheat production (USDA, 2022a), and the majority of wheat grown 

in Germany and France is also winter wheat (Canal et al., 2017; Macholdt and Honermeier, 2017).        

Table 1. Crop-region combinations included in this analysis. Green fill represents combinations included, 
while grey fill represents crop-region combinations excluded. 

 Canola Non-Durum wheat Dry field peas 

Saskatchewan    

Canada    

Australia    

France    

Germany    

U.S.    

 

Table 2. Production estimates for each crop in the regions included in this analysis. Recent estimates of 
non-durum wheat production are not available for France or Germany. 

 Production (tonnes) 

 Canola Non-Durum wheat Field peas 

Saskatchewan 10,025,036a 9,881,930a 1,903,690a 

Canada 18,595,379a 26,185,750a 3,651,020a 

Australia 3525412b 23,352,042b /c 

France 3,918,400d 34,050,960e 612,000d 

Germany 3,565,800d 21,755,200e 273,400d 

U.S. /c 46,994,164f 720,005f 

a 5 year average (2018-2022) as reported by Statistics Canada, table 32-10-0359-01 (Statistics Canada, 

2022) 
b 5 year average (2017-2021) as reported the Australian Bureau of Statistics (ABARES, 2022) 
c Crop-region combination not included in this analysis 

d 5 year average (2018-2022) as reported by EU Oilseed and Protein Crops (European Commission, 

2022a) 
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e 5 year average (2018-2022) as reported by Eurostat (European Commission, 2022b) 
f 5 year averagefrom (2018-2022) as reported by USDA NASS (USDA-NASS, 2022) 

 

2.2 Identification of potential data sources  

Calculation and comparison of carbon footprints across the crop-region combinations required the 

identification and compilation of data of sufficient quality to characterize crop management practices, 

soil/climate conditions, inputs, emissions and yields in each region. Specifically, data from the following 

categories are required for inclusion in all crop-region models:  

● Yield  

● Seed inputs 

● Nutrient inputs/soil amendments including lime, manure, N fertilizers, P fertilizers, K fertilizers, 

and S fertilizers 

● Pesticide inputs including herbicides, fungicides, and insecticides 

● Energy use for irrigation 

● Energy use for field activities 

● Transportation of field inputs 

● Post-harvest energy use 

● Field level fluxes including direct and indirect N2O emissions from N inputs, CO2 emissions from 

lime and urea, and soil carbon changes from land use or management changes. 

The following data points were excluded due to lack of relevance to the carbon footprints of field 

crop production: 

• Infrastructure is excluded due to trivial contributions to GHG emissions when taken over the 

lifespan of the infrastructure  

• Field level methane emissions from application of manure to agricultural fields are excluded, as 

field level emissions are negligible (Uddin et al., 2020), and calculation of them is not included in 

the IPCC methods (IPCC, 2019). 

 Such data may be derived from various sources that differ in their scope, coverage, and quality. 

Potential sources include publicly-available and commercial life cycle inventory (LCI) databases, other 

publicly available databases such as those provided by national and international statistics agencies, 

peer-reviewed scientific literature, and reputable grey literature sources produced by governments and 

industry groups. Sources were only included if they presented quantitative values for the inventory data. 

They were excluded if they presented the sources of the inventory data without including the values. 

All of the countries of interest have developed country-specific, publicly available LCI databases (Figl 

and Kusche, 2021; Fritter, 2020; Grant, 2016; Koch and Salou, 2016; USDA-National Agricultural Library, 

2014), which provide varying degrees of sectoral coverage. In addition to these country-specific 

databases, Moreno Ruiz et al. (2021) and van Paassen et al. (2019) were also searched. Each of these 

databases were first searched to determine if they included complete LCI datasets representative of 

each crop-region combination. To be considered, data sets had to be available as unit process data sets, 

rather than aggregated system process data sets. System process data sets were excluded because they 

represent the complete inventory of elementary flows associated with the supply chains of products, 

rather than as a set of linked processes with product flow inputs and outputs. Because of this, no 
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individual LCI data points can be sourced, no modifications can be made to the data sets (i.e., changing 

electricity grid mixes to more appropriate mixes, etc.), and all granularity is lost with respect to the 

contributions to GHG emissions arising from the different life cycle stages of crop production. 

Searches of peer reviewed scientific literature were also performed to identify possible sources that 

may provide data of higher quality. All fields searches in the Web of Science database were used with 

the keywords “life cycle assessment” OR “life cycle inventory” OR “life cycle analysis” OR “carbon 
footprint” OR LCA OR LCI in combination with terms representing each region-crop pairing. Region terms 

were used that represented both the name of the region itself, as well as the nationality attributable to 

that region (i.e., Canada OR Canadian, France OR French, etc.), except for searches using the term 

Saskatchewan. Multiple possible synonyms were used to represent each crop in each search to ensure 

complete coverage of the peer reviewed literature. The terms pea OR pulse OR legume were used to 

search for literature related to field peas. The terms wheat OR “spring wheat” OR “winter wheat” were 
used to search for literature related to wheat. The terms canola OR rape OR rapeseed were used to 

search for literature related to canola. No temporal boundaries were placed on these literature 

searches, because any potential data derived from these literature searches was subsequently assessed 

for data quality as described in section 2.3. 

Grey literature from government and industry groups were similarly consulted to identify potential 

sources of high-quality data. Grey literature sources were identified through internet and website 

searches of each region’s statistical databases and government agricultural departments. These included 

Statistics Canada and Agriculture and Agri-food Canada, the Australian Bureau of Statistics and 

Department of Agriculture, Fisheries and Forestry, the French National Institute of Statistics and 

Economic Studies and Ministry of Agriculture and Food, the German Federal Statistics Office and Federal 

Ministry of Food and Agriculture, and the United States Census Bureau and Department of Agriculture. 

These sources were searched for agricultural census data, and any data related to production volumes 

and yields, land use, field activities and management practices, irrigation, or inputs of fertilizers and crop 

protection products. Additional searches were also performed to identify potential sources from 

industry groups representing field crop farmers in each region. These included the Canadian Roundtable 

for Sustainable Crops (CRSC), the Canola Council of Canada, the Canadian Canola Growers Association, 

Grain Growers of Canada, Western Canadian Wheat Growers, Pulse Canada, Saskatchewan Pulse 

Growers, Grain Growers and Grain Producers of Australia, the Grains Research and Development 

Corporation, the Australian Oilseeds Federation, L’Association générale des producteurs de blé, the 

French Federation of Oilseed and Protein Crop Producers, Terres Inovia, ADEME, Union zur Förderung 

von Oel und Proteinpflanzen, the German Grain Club, the National Association of Wheat Growers and 

National Wheat Foundation, and the American Pulse Association.  

It must be noted that data sets sourced from different LCI databases and literature sources may not 

be methodologically consistent due to differences in reporting guidelines, modelling protocols, and 

submission criteria (Turner et al., 2020). For example, land use changes and land occupation are 

modeled differently between Moreno Ruiz et al. (2021) and van Paassen et al. (2019). Therefore, it was 

necessary that all relevant data identified from the source documents be extracted and remodeled on a 

methodologically consistent basis to enable rigorous comparisons between results. 
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2.3 Data quality assessment 

Following the identification of potential data sets and/or individual data points in LCI databases, 

peer-reviewed literature, and grey literature sources, all data points were screened using established LCI 

data quality screening methods to determine the quality of data available for modeling inputs to each 

cropping system. Data quality criteria were defined in accordance with the pedigree matrix defined by 

Ciroth et al. (2016) (Table 3), with specific modifications (described below) as appropriate to the goals of 

the current analysis. The pedigree matrix provides a semi-quantitative method for assessing the quality 

of individual data points relative to the overall data quality goals of the analysis being performed. Each 

score in the pedigree matrix is associated with an additional uncertainty factor that combines with base 

sectoral uncertainty factors for each data point to generate the overall uncertainty distribution for that 

data point (Table 4), in accordance with equation 1 in Ciroth et al. (2016). The use of a pedigree matrix 

for assessing data quality allows for assessment of parameter uncertainty, an important contributor to 

uncertainty in LCA studies (Bamber et al., 2019).  

Table 3. Default pedigree matrix for assessing data quality (Ciroth et al., 2016). 

Reliability Completeness 
Temporal 

correlation 

Geographical 

correlation 

Further technological 

correlation 

Quality 

Score 

Verified data based 
on measurements 

Representative data 
from all sites relevant 
for the market 
considered, over and 
adequate period to 
even out normal 
fluctuations 

Less than 3 years of 
difference to the 
time period of the 
data set 

Data from area 
under study 

Data from enterprises, 
processes and 
materials under study 

1 

Verified data partly 
based on 
assumptions or 
non-verified data 
based on 
measurements 

Representative data 
from > 50% of the sites 
relevant for the 
market considered, 
over an adequate 
period to even out 
normal fluctuations 

Less than 6 years of 
difference to the 
time period of the 
data set 

Average data from 
larger area in which 
the area under study 
is included 

Data from processes 
and materials under 
study (i.e. identical 
technology) but from 
different enterprises 

2 

Non-verified data 
partly based on 
qualified estimates 

Representative data 
from only some sites 
(<< 50%) relevant for 
the market considered 
or > 50% of sites but 
from shorter periods 

Less than 10 years of 
difference to the 
time period of the 
data set 

Data from area with 
similar production 
conditions 

Data from processes 
and materials under 
study but from 
different technology 

3 

Qualified estimate 
(e.g. by industrial 
expert) 

Representative data 
from only one site 
relevant for the 
market considered or 
some sites but from 
shorter periods 

Less than 15 years of 
difference to the 
time period of the 
data set 

Data from area with 
slightly similar 
production 
conditions 

Data on related 
processes or materials 

4 
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Reliability Completeness 
Temporal 

correlation 

Geographical 

correlation 

Further technological 

correlation 

Quality 

Score 

Non-qualified 
estimates 

Representativeness 
unknown or data from 
a small number of sites 
and from shorter 
periods 

Age of data unknown 
or more than 15 
years of difference to 
the time period of 
the data set 

Data from unknown 
or distinctly different 
area (North America 
instead of Middle 
East, OECD-Europe 
instead of Russia) 

Data on related 
processes on 
laboratory scale or 
from different 
technology 

5 

 

Table 4.  Default pedigree matrix uncertainty factors (Ciroth et al., 2016). 

Score Reliability Completeness Temporal 
Correlation 

Geographical 
Correlation 

Technological 
Correlation 

1 1 1 1 1 1 

2 1.05 1.02 1.02 1.01 1.05 

3 1.1 1.05 1.1 1.02 1.2 

4 1.2 1.1 1.2 1.05 1.5 

5 1.5 1.2 1.5 1.1 2 

 

When assessing the quality of yield data, the definitions associated with each data quality score for 

temporal correlation were altered to better reflect the potential for inter-annual variability in crop 

yields. Currently, the standard pedigree matrix as defined by Ciroth et al. (2016) assigns the highest 

quality score to data points for which there is less than 3 years of difference in the time periods of the 

study and the data set, with data quality decreasing as data sets get older. Use of this system, however, 

assumes that data are representative of discrete moments in time, or periods of time that do not span 

data quality rankings. This is inappropriate when assessing data quality for yield estimates due to the 

potential for inter-annual variability in yields. Inter-annual yield variability may be high for canola 

(Takashima et al., 2013; Taylor et al., 2013; Torriani et al., 2007), wheat (Fischer et al., 2022; Hoffmann 

et al., 2018; Liu et al., 2019), and field peas (Fuhrer and Chervet, 2015). This is a particularly salient issue 

for Canadian yield data, as 2021 yields for all three of the crops included in this analysis were drastically 

reduced due to widespread drought across the Canadian prairie provinces in 2021 (Agriculture and Agri-

Food Canada, 2021). Similar reductions in yield were also experienced for a number of crops around the 

world in 2021 (USDA, 2022b). Given the potential for interannual variability in yields, alterations have 

been made to the temporal correlation row of the pedigree matrix for assessment of yields as detailed 

in table 5.   

Table 5. Alternative pedigree matrix definitions for assessment of the quality of yield estimates used in 
the current analysis. 

Temporal correlation – Score definition Data quality score 

5+ year average with last year less than three years prior  1 

3 year average with last year less than three years prior OR 5+ 
year average with last year 3-6 years prior 

2 

3 year average with last year 3-6 years prior OR 5+ year average 
more than 6 years prior 

3 
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1 year value less than 6 years prior OR 3+ year average more than 
6 years prior 

4 

1 year value more than 6 years prior 5 

 

An additional change was also made to the pedigree matrix with respect to the assessment of 

reliability for each data point. In the default pedigree matrix, verified data based on measurements are 

assigned the highest quality score while non-verified estimates are assigned the lowest quality score. In 

the context of this analysis, however, verified measurements of farm level inputs and outputs should 

not be considered as the highest quality data unless replicates are taken from a sufficiently large sample 

of farms to be nationally representative. This is often not the case, particularly in the context of field-

level emissions, such as nitrogenous emissions released from application of N fertilizers to agricultural 

fields (Klimczyk et al., 2021). Rather, well defined mathematical relationships are often used for 

estimation of field-level nitrogenous emissions at large scales, such as whole countries (Yeluripati et al., 

2015). Many different models exist for the estimation of field-level nitrogenous emissions that may vary 

in their geographic scope, complexity, and types of nitrogenous emissions covered. These include the 

IPCC models which may be used to represent globally generic emissions using Tier 1 methods and 

default emissions factors or nationally-resolved emissions using Tier 2 methods and regionalized 

emissions factors (IPCC, 2019). These models are widely accepted, as evidenced by their use in the 

National Inventory Reports (NIRs) of each country included in this analysis (CCNUCC, 2022; Environment 

and Climate Change Canada, 2022; Federal Environment Agency, 2022; Government of Australia, 2022; 

U.S. Environmental Protection Agency, 2022). In some cases, farm input data are also modeled, 

particularly when measured data are unavailable. This is the case, for example, in the Australian canola 

carbon footprint report prepared by the Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) in which N fertilizer inputs are modeled based on equations from a previously developed 

calculator (Eady, 2017). 

Taking into account the preferability of modeled data in estimating emissions at the national scale, 

and the potential for the use of modeled data for farm level inputs, the following changes were made to 

the reliability column of the pedigree matrix. First, nationally-resolved modelled emissions (such as 

those calculated using IPCC Tier 2 methods) were given a reliability score of 1 because these are the 

highest quality data practically available for modeling at the national scale. Generically modeled 

emissions (such as those calculated with IPCC Tier 1 methods) were given a reliability score of 2. 

Similarly, modeled inventory data were given a reliability score of 2. In all cases, reliability scores may be 

further decreased if the model inputs included in the data set themselves receive lower reliability 

scores. Finally, measured input and emissions data from a single or a small number of field sites (i.e., 

<10) or experimental sites were given a score of 4 for reliability, as these measures are poorly fit for use 

at the national scale.         

When models were used to calculate LCI data points (e.g., N2O emissions calculated using the IPCC 

methodology), the specificity of the emission factors (EFs) were assessed in combination with the 

geographical representativeness of the data entered into the model (e.g., N fertilizer application rate, 

etc.). The lowest geographical representativeness between the data entered into the model and the EF 

specificity was used as the limiting factor in assigning the pedigree score. For example, if the N fertilizer 

application rate was representative of the region under study, but a global EF for N2O emissions was 
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used (e.g., IPCC Tier 1), the value for N2O emissions was assigned a geographical representativeness 

score of 2, representing “average data from larger area in which the area under study is included”. If the 
EF used was representative of a different region (not globally representative), then scores of 3, 4, or 5 

were assigned depending on the similarity of production conditions in that region to the region under 

study. In general, if a combination of sources were used for one data point (or several sources listed 

generally and the specific source for each data point was not indicated), then the pedigree scores were 

assigned based on the lowest quality source (table 6).    

Table 6. Alternative pedigree matrix definitions for assessment of reliability.  

Reliability – Score definition Score 

Verified data based on measurements from a 
large number of sites, such as survey data OR 
nationally-resolved emissions models, such as 
IPCC Tier 2 

1 

Verified data partly based on assumptions or 
non-verified data based on measurements OR 
generic emissions models, such as IPCC Tier 1 

2 

Non-verified data partly based on qualified 
estimates 

3 

Qualified estimate (e.g. by industrial expert) OR 
measured inputs and emissions from a single or 
small number of field or experimental sites (i.e., 
<10) 

4 

Non-qualified estimates 5 

 

Changes were also made to the pedigree matrix with respect to the assessment of completeness for 

each data set. The pedigree matrix defined by Ciroth et al. (2016) assigns the lowest data quality score 

for completeness when the representativeness of the data set is unknown. However, in a review of 

Canadian agri-food LCI data sets for population of the Canadian Agri-food Life-Cycle Data Centre 

(CALDC), Turner et al. (2020) found that only a small portion (i.e., ~7%) of data sources presented 

information regarding the percentage of the supply covered by the sample used in dataset generation. 

Therefore, the absence of information regarding representativeness of data sets was expected to be the 

norm during this data mining exercise. For this reason, unknown or unreported data set 

representativeness was instead assigned a completeness score of 3, representing the average data 

quality score on the pedigree matrix, and <50% of the supply covered (Table 7). Additionally, the 

definition for a completeness score of 4 was expanded to include data derived from recommendations 

(i.e., from crop-growing manuals, etc.). Recommendations were assigned a score of 4 because they are 

not explicitly representative of any of the supply; however, it was assumed that recommendations are 

based on relevant metrics that inform the practices performed by farmers. The definitions for 

completeness scores of 1, 2, and 5 were unchanged.   

Table 7. Alternative pedigree matrix definitions for assessment of completeness in terms of percentage 
of supply covered. 

Completeness – Score definition Data quality score 
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Representative data from all sites relevant for the market 
considered, over and adequate period to even out normal 
fluctuations 

1 

Representative data from > 50% of the sites relevant for the 
market considered, over an adequate period to even out normal 
fluctuations 

2 

Representative data from only some sites (<< 50%) relevant for 
the market considered or > 50% of sites but from shorter periods, 
or representativeness of data unreported 

3 

Representative data from only one site relevant for the market 
considered or some sites but from shorter periods, or data 
derived from recommended practices (i.e., crop growing manuals, 
etc.) 

4 

Representative data from a small number of sites and from 
shorter periods 

5 

 

Finally, the definition associated with a score of 1 for geographical correlation was slightly modified. 

Except for Saskatchewan, this analysis focused on national-level carbon footprint models of each crop-

region pairing. In some cases, however, data sets were found which were representative of a smaller 

region within a country, such as a province or state in Australia and the U.S., or a specific region in 

France or Germany. According to the standard definitions in the pedigree matrix, such data points would 

be given a geographical correlation score of 3 as they are not nationally representative. However, this 

assumes an equal distribution of agricultural activities within each country being modelled, which is 

often not the case. Within Australia, for example, the provinces of New South Wales and Western 

Australia produce much larger amounts of agricultural products than do the provinces of Victoria, 

Queensland, South Australia, or Tasmania (ABARES, 2022). For this reason, data sets representative of 

smaller areas within the regions being modeled were given geographical correlation scores of 1 if they 

corresponded with important production regions. Importantly, however, the percentage of supply 

covered was still taken into account in assessing completeness, meaning that although data sets may 

receive higher scores for geographical correlation, they were still scored accordingly based on the 

percentage of overall supply covered for completeness.       

In some cases, the definitions associated with different data quality scores in the pedigree matrix 

were too general to adequately assess data quality. For this reason, some interpretations of data quality 

definitions were required to be better able to more systematically assess data quality. Specifically, for 

the reliability category, data that were either published in a database or in peer reviewed literature 

were considered to be verified data, and hence to align with the reliability definitions for scores of 1 and 

2. In some cases, interpretation was also required for temporal correlation in instances in which older 

data were extrapolated forward in time (i.e., data representative of 2000-2005 extrapolated forward to 

2021). In these cases, temporal correlation was assessed in accordance with the final year of the original 

data set date range, plus an additional credit to represent the modifications made to the data set. A 

data set originally representative of the time period 2000-2005 extrapolated to 2021 would therefore be 

given a temporal correlation score of 4 rather than 5. If the documentation for a dataset did not indicate 

the years of representativeness, it was assumed that the data were from 5 years prior to the publication 
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of the original source describing the methods of data collection. This provided a conservative estimate 

of the length of time from data collection to publication. 

Importantly, in making these changes to the pedigree matrix, only the definitions associated with 

different data quality scores were altered. The contributions to data quality uncertainty associated with 

each data quality score in each category have not been altered from those presented in table 4 (from 

Ciroth et al. (2016)).     

2.4 Choice of best fit data sets for crop-region models 

Once all potential data points were assigned data quality scores for their reliability, completeness, 

and temporal, geographic, and technological correlation, decisions had to be made regarding which of 

the identified sources were of the highest quality for use in model development. This choice was done 

through calculation of the amount of uncertainty that would be introduced into the models through the 

use of each specific data source. The total uncertainty associated with each of these data points from 

each potential source was calculated, taking into account the pedigree matrix score for each data point 

and associated uncertainty contribution (Tables 3 and 4). According to Ciroth et al. (2016), total 

uncertainty may be calculated using the equation 

𝑈𝑇 = 𝑒𝑥𝑝 (√(𝑙𝑛𝑈𝑏)2 + ∑(𝑙𝑛𝑈𝑖)2𝑖 ) 

where Ut represents total uncertainty, Ub represents basic uncertainty, and Ui represents the additional 

uncertainty factors from pedigree matrix scores. Ut represents the total geometric standard deviation of 

the uncertainty distribution of each inventory data point, from which Monte Carlo samples would be 

drawn during uncertainty propagation (Bamber et al., 2019). Ub represents the contribution to total 

geometric standard deviation that may be derived from the range of collected measurements for a 

specific data point, such as those collected from a sample of farmers (Turner et al., 2022). Ut therefore 

represents the contribution to total uncertainty derived from the pedigree matrix entries associated 

with each data point (Ciroth et al., 2016). Since the raw data used in the calculation of each data point in 

each source was not available, Ub was assumed to be equal to a base value of 1 for all data points. As a 

result of this assumption, the Ub term drops out of the total uncertainty calculation because ln(1) = 0. 

Each value for Ut is therefore representative of contributions to uncertainty related only to the pedigree 

matrix entries for each data point. Using this method, all calculated uncertainty values were within the 

boundaries of 1.00 ≤ 𝑈𝑡  ≤ 2.52, as these values represent the minimum and maximum values of 

equation 1 (i.e. representing pedigree matrix entries of all ones and all fives, respectively).   

Once uncertainty values were calculated for each data point from each identified data source, the 

calculated uncertainty values for data points representing the same inputs for each crop/country 

combination were compared to identify the data point/source which is of the highest quality (i.e., that 

will introduce the least amount of uncertainty into the final results). The choice of best fit data for 

modelling each data point for each crop-region combination therefore took into account these overall 

data quality scores. For the choice of data representing fertilizer and pesticide inputs, two options were 

possible for use as a data source: the combination of nutrient or total pesticide inputs with the 

distribution of types of fertilizers or pesticides applied, or the use of data characterizing the amounts of 

specific fertilizer and pesticide types. In these cases, the data chosen was that which had the lowest 
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overall uncertainty score (i.e., highest overall data quality). Similarly, data on energy use related to field 

or post-harvest activities may be characterized by the total energy use, or the combination of energy 

use per activity and activity data (i.e., number of passes, etc.). For manure, data can be represented as 

the total amount of manure applied per total ha of harvested crop, or as the percent of crop receiving 

manure and the amount of manure applied per ha of crop receiving manure. The data with the highest 

overall quality was also chosen for these data points. 

For field-level emissions and soil carbon changes, the available data points were also compared 

against a potential scenario of using the best available input data in conjunction with the best practices 

for emissions modelling. For this study, IPCC Tier 2 methods for modelling direct and indirect N2O 

emissions, IPCC Tier 1 methods for modelling CO2 emissions from lime and urea, and IPCC Tier 2 

methods using the data available in the each country’s NIR for soil carbon changes were considered to 

be best practices (IPCC, 2019). These methods are in line with those applied for calculation of GHG 

inventories in each country’s NIR, and are internationally recognized (IPCC, 2019). This choice is also in 

line with the guidelines for assessment of environmental performance of animal feed supply chains 

provided by UN FAO LEAP (FAO, 2016), the most relevant guidance document from the partnership as 

the crops included in this analysis may be key contributors to livestock feeds (Begna et al., 2021; 

Cordeiro et al., 2022; Pembleton et al., 2016).The data quality for these scenarios was compared against 

the best available data points for these emissions from the identified sources. Therefore, for some crop-

country combinations, the best available data for emissions may come from the best available data for 

fertilizer inputs, re-modelled using IPCC best practices (i.e. rather than coming directly from any of the 

identified data sources). 

In instances of equivalent uncertainty scores for specific data points, data points coming from data 

sets from which other data points were already selected were preferentially selected based on the 

higher likelihood of methodological consistency in the generation of the data points.  

2.5 Carbon footprint methodology 

2.5.1 Intended applications, audience, and practitioners 

The intended audience of this study includes a number of governmental and industry stakeholders 

both within Canada, and internationally. These stakeholders include GIFS, the Government of 

Saskatchewan, as well as relevant representatives of the various countries to which comparisons are 

made in this report. The results of this study are intended to be used to draw meaningful comparisons 

between the relative carbon footprints of major commodity field crops grown within Saskatchewan, 

Canada, and countries representing major competitors in international markets. These results may also 

be used to identify potential hotspots within the supply chains for major agricultural products in Canada 

that may serve as priority targets for future GHG mitigation efforts.  

2.5.2 Functional unit 

Results for each crop-region combination are reported according to a functional unit of one kilogram 

of product (i.e., wheat grain, canola seed, and dry field peas) at farm gate. 
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2.5.3 System boundaries 

The system boundaries for this analysis included all relevant material, energy, and emissions flows 

associated with production of commodity field crops in each of the crop-region combinations. These 

included farm-level inputs of fertilizers, plant protection products, seed, and energy for irrigation, field 

activities, and post-harvest activities (i.e., product drying). All on-farm activities were considered as 

foreground processes, while all processes occurring upstream of the farm were considered as 

background processes. Transportation of material inputs to the field was also considered. The 

geographical, temporal and technological boundaries were intended to be representative of actual 

contemporary production conditions in Saskatchewan, Canada, Australia, France, Germany, and the 

United States as possible. Section 2.5.6 lists the sources for each data point and their associated data 

quality scores relative to this overarching goal. 

2.5.4 Cut-off criteria and exclusions 

Across all three crops, material inputs and associated GHG emissions attributable to production and 

maintenance of infrastructure were excluded as they generally make small contributions (i.e., <5%) to 

life cycle GHG emissions compared to combustion of fuel during use (Biswas et al., 2008; Bortolini et al., 

2014; Meisterling et al., 2009). These impacts decrease further when amortized against total crop 

production over the lifespan of the infrastructure (Ghamkhar et al., 2022), which may be up to 30 years 

for some machinery (Lips, 2017). Additional crop and crop-country based exclusions were also made, as 

detailed below.  

2.5.4.1 Canola 

Data taken from van Paassen et al. (2019) for modeling canola production in Canada and Australia 

included small inputs of pig and poultry manure to each system. These inputs were excluded from 

calculation of life cycle GHG emissions for these two systems. Exclusion of manure inputs from average 

canola production systems in each country is in line with manure input values reported by Alcock et al. 

(2022). Additionally, exclusion of manure from the Canadian production system is in line with the 

updated canola carbon footprint report produced for the CRSC ((S&T)2 Consultants Inc., 2021a) which 

indicate that, on a production-weighted basis using best available data, only ~2% of harvested canola 

area in Canada receives an application of manure. Additionally, there are no data available on manure 

application rates, nor the types of manure applied, which could significantly affect amounts of nutrients 

applied. Similarly, exclusion of the indicated manure inputs to Australian canola production systems is in 

line with previous carbon footprint analyses of Australian canola production performed by Eady (2017), 

who indicate that animal manure is not applied to broad-acre cropping (i.e., large-scale field-crop) soils 

in Australia.   

Data taken from van Paassen et al. (2019) also include small amounts of lime as inputs to both 

Saskatchewan, and Canadian canola production systems. These inputs, and associated CO2 emissions 

from the application of lime to agricultural fields are excluded from this analysis in line with the updated 

canola carbon footprint report produced for the CRSC ((S&T)2 Consultants Inc, 2021a). This report 

indicates that no publicly available information characterizing agricultural lime use in Canada has been 

released within the last 20 years, and that, based on Canadian NIRs, there is a low average emissions 

rate from agricultural lime use in Canada. Inputs of lime to Saskatchewan and Canadian canola systems 

have therefore been excluded.        
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Inputs of energy for irrigation of Australian canola crops were excluded. This is in line with previous 

work done by Eady (2017), which indicates that only a small portion of Australian canola is irrigated, 

based on customized statistics received from the Australian Bureau of Statistics specifically for their 

study. While Eady (2017) indicates that a large portion of canola production in Tasmania is irrigated, 

Tasmania represents only a very small percentage of total Australian canola production (i.e., ~0.1%) 

(ABARES, 2022). 

2.5.4.2 Wheat 

Similar to canola, inputs of lime and associated emissions were excluded from Saskatchewan and 

Canadian wheat production systems for the same reasons as previously described. Unlike canola, 

however, inputs of manure from van Paassen et al. (2019) were not excluded from the Canadian wheat 

production model. The updated carbon footprint report for Canadian wheat production produced for 

the CRSC indicates that reconciliation units 17 and 19 in Ontario have data available regarding manure 

application rates, and significant wheat production ((S&T)2 Consultants Inc., 2021b). However, neither 

manure application rates, nor types of manure applied are reported, so types and amounts indicated by 

van Paassen et al. (2019) were used instead. For Saskatchewan, manure inputs were still excluded, since 

RUs 17 and 19 are in Ontario.  

2.5.4.3 Field peas 

Lime and manure inputs and associated emissions were excluded from Saskatchewan and Canadian 

pea production systems since the CRSC reports indicated that they excluded them due to low impacts 

((S&T)2 Consultants Inc, 2021b), despite the values indicated in van Paassen et al. (2019) for lime and 

manure application to Canadian peas. Bamber et al (2020a) also did not report any lime or manure 

application to Canadian peas, based on survey responses from farmers. Irrigation was excluded for 

Saskatchewan and Canadian pea production systems, since all sources were in agreement that there is 

no significant amount of irrigation taking place. Irrigation was also not included for German peas since 

van Paassen et al (2019) did not include any inputs of energy use for irrigation, although Nemecek 

(2007a) did indicate an input of irrigation water. 

2.5.5 Allocation methods 

2.5.5.1 Manure 

Manure inputs to fields were generated from animal production systems, where the animals ate 

crops that were originally fertilized using synthetic fertilizers. Therefore, the nutrients present in manure 

originated from synthetic fertilizer production processes. Based on this reasoning, manure inputs were 

modelled as these original synthetic fertilizer production processes, rather than as a co-product of 

animal production systems. This removes the need for allocation between manure and all other co-

products of these animal production systems. However, the nutrients present in the manure were 

considered recycled materials since they contributed to the growing of the first round of crops (that fed 

the animals), then the second round of crops (that are receiving the manure). A 50/50 allocation of 

upstream impacts between the first use and second, recycled use of nutrients was assumed, in line with 

recommendations from AFNOR (2011). 
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2.5.5.2 Wheat grain and straw 

Wheat cultivation results in two co-products – wheat grain and wheat straw. While canola (Iqbal et 

al., 2016; Karan and Hamelin, 2021; MacWilliam et al., 2014; Rothardt et al., 2021; Umbers and Watson, 

2021; Vinzent et al., 2017; Wang et al., 2020) and pea residues (Bahl and Pasricha, 2000; Marschner et 

al., 2004; Walley et al., 2007; Wang and Sainju, 2014) are commonly left on fields and/or incorporated 

into soils, a portion of wheat straw is harvested and removed from fields to be used in other processes. 

Therefore, wheat grain and straw are considered to be co-products of wheat production systems. ISO 

guidelines present a hierarchy of methodologies for dealing with processes that produce multiple co-

products. First, it is recommended that allocation be avoided by taking a system expansion approach. If 

such an approach is infeasible and allocation is unavoidable, ISO guidelines dictate that impacts should 

be allocated between co-products first according to an underlying biophysical relationship between co-

products, and, if not possible, according to some other relationship such as relative economic value (ISO, 

2006a).  

The first step in developing allocation factors for wheat grain and straw was determining the 

proportion of straw that is removed from agricultural fields – that is, the proportion of above-ground 

crop residues that are a co-product. High quality, crop-specific information regarding amounts of crop 

residues baled are not available from any of the countries included the current analysis. Estimates in the 

literature regarding wheat straw removal rates for each country vary significantly (i.e., from 15% - 85% 

of residues removed) (Brosowski et al., 2020; Broster and Walsh, 2022; Fix and Tynan, 2011; Juneja et 

al., 2013; Lafond et al., 2009; Li et al., 2012b; Lokesh et al., 2019; Weiser et al., 2014). Unfortunately 

these sources only provide estimates of straw removal rates, without taking into account the proportion 

of area from which residues are removed. Calculation of total straw removed per kg of wheat therefore 

required estimates of removal rates, as well as crop area from which residues are removed.  

In the absence of high quality, consistently calculated data regarding the total amount of residues 

removed per region, a standardized rate of residue removal has been applied to all regions. This 

standardized rate is calculated based on data for Saskatchewan, which indicates: total non-durum wheat 

area in Saskatchewan in 2021 (Statistics Canada, 2022b); total area from which crop residues were 

removed in Saskatchewan in 2021 (Statistics Canada, 2021b); and an average residue removal rate for 

Saskatchewan of 34.5% (Lafond et al., 2009). For all wheat production models it was therefore assumed 

that 8.3% of wheat straw was removed from fields, reflecting 34.5% of straw removed from 24.1% of 

non-durum wheat area (Lafond et al., 2009; Statistics Canada, 2021b, 2022b). Given the high degree of 

variability in estimates of wheat straw removal rates this assumption was the subject of sensitivity 

analyses. One key drawback of this approach is that it is based on the assumption that all land from 

which straw was removed in Saskatchewan is used for production of non-durum wheat (i.e., assuming 

that straw is only removed from non-durum wheat fields). While this assumption is tenuous, in the 

absence of crop-specific information regarding areas from which residues are removed it is unavoidable. 

The limitations of this assumption are further discussed in the limitations section.    

Following identification of the amounts of straw co-produced with grain, it was necessary to 

choose an allocation method for partitioning impacts between co-products. LCI data for wheat 

cultivation were sourced from a variety of databases, reports, and literature sources which varied in 

their allocation principles. In some cases, co-production of wheat straw was ignored, and all impacts 

were allocated to production of wheat grain ((S&T)2 Consultants Inc., 2021a, Munoz et al. 2013), which 
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is an approach that is not consistent with the ISO 14044 standard for life cycle assessment. When 

impacts were allocated between co-products both mass (i.e., Doran-Browne et al., 2015; Li et al., 2012a; 

Naudin et al., 2014) and economic (i.e., Eady et al., 2012; Nguyen et al., 2012; Van Middelaar et al., 

2013) allocation principles were commonly applied. In some cases, allocation factors were instead 

defined based on measures of relative chemical energy content between grain and straw. Pelletier et al. 

(2010) allocate between wheat and straw based on gross chemical energy content, but do not present 

the allocation factors used. Similarly, Nordborg et al. (2014) also allocate based on gross chemical 

energy content, but this allocation step is done at the ethanol production plant rather than on-farm, so 

allocation is between wheat grain and the co-product distiller’s dried grains with solubles. Data from 
Van Paassen et al. (2019) include allocation factors for wheat straw and grain based on gross chemical 

energy content. Finally, Buchspies and Kaltschmitt (2018) discuss the use of lower heating values as a 

basis for allocation, but only apply this principle to bioethanol production and not on farm, instead 

allocating all impacts to production of wheat grain. 

While economic allocation between wheat grain and straw has been commonly applied in the 

literature, strong arguments have been made against its use (Pelletier and Tyedmers, 2011) on the basis 

that economic value bears no relationship to and fundamentally misrepresents the actuals flows of 

resources and emissions characteristic of industrial activities. For this reason, economic allocation was 

not used in this analysis, and allocation factors were instead defined based on underlying biophysical 

relationships, consistent with the ISO allocation hierarchy (ISO, 2006a). Arulnathan et al. (2022) provide 

an in-depth discussion of the use of external- or internal-causality in choice of biophysical relationships 

used as a basis for allocation between co-products. In doing so, they provide a strong argument for the 

use of chemical energy content as an underlying biophysical basis upon which to define allocation 

factors, as the amounts of energy present in co-products should roughly reflect the relative proportions 

of input energy used in production of each co-product, while other relationships, such as mass, may not 

(Arulnathan et al., 2022). 

Both mass, and energy-based allocation methods were examined for their appropriateness to use in 

this analysis. To generate mass allocation factors between grain and straw, the percent of straw 

removed for each country was multiplied by the estimates of total above-ground biomass for each 

country (see section 2.5.8.3), and the proportions of total co-produced mass were used as allocation 

factors. Definition of energy-based allocation factors accounted for two important considerations: first 

that estimates of the relative energy contents of wheat grain and straw were available in consistent 

units for calculation of allocation factors; and second that factors may be regionally resolved, as energy 

content of wheat grain and straw may be impacted by both varietal (Montero et al., 2016; Rodehutscord 

et al., 2016) and local climate and soil conditions (Hernández et al., 2019; Montero et al., 2016). 

Montero et al. (2016), for example, find that wheat straw produced in Baja, California has an average 

higher heating value of 14.86 MJ/kg DM, less than that of the higher heating value of 16.68 MJ/Kg DM 

predicted for wheat straw produced in China (Niu et al., 2014). 

Accounting for both the necessary consistency in units and potential regional differences in energy 

contents, only the energy allocation factors presented by van Paassen et al. (2019) were deemed 

appropriate for use in this study. Both Havrysh et al. (2021) and Feedipedia (Heuzé et al., 2021, 2015) 

provide the necessary energy contents for calculating allocation factors, but neither provide this 

information on a spatially resolved basis. To calculate energy allocation factors, the values presented by 

Van Paassen et al. (2019) were adjusted to account for the grain and crop residue yields used in this 
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analysis. Upon calculation of these energy-based allocation factors it was determined that the energy- 

and mass-based allocation factors differed very little (i.e., 0.22% - 0.25%). Given the small differences in 

allocation factors, mass- and energy-based allocation were considered equivalent in this analysis. The 

allocation factors used in this analysis were therefore based on relative mass of co-products, and are 

presented in Table 8. Further, a sensitivity analysis was not performed around this choice of allocation 

method since the differences in resulting impacts would be trivial.   

Table 8. Mass allocation factors used for partitioning of impacts between wheat grain and straw in this 
analysis, taking into account the proportions of straw removed from fields in each region.  

 Wheat grain allocation factor Wheat straw allocation factor 

Saskatchewan 0.95 0.05 

Canada 0.95 0.05 

Australia 0.95 0.05 

France 0.96 0.04 

Germany  0.96 0.04 

United States 0.95 0.05 

2.5.5.3 Nitrogen credit 

Peas are nitrogen-fixing legume crops, which can provide an input of N for the next crop in rotation. 

This was modelled using system expansion and substitution. The N credit provided by peas for the next 

crop in rotation was modelled as an avoided input of ammonia fertilizer, reflecting the fact that the next 

crop in rotation would require a smaller input of N fertilizer due to the N fixed by the peas. This was 

modelled as ammonia since this is the simplest N fertilizer that is used as the building block for all other 

N fertilizer types. 

2.5.6 Foreground data collection 

A large number of potential data sources were identified for modeling different crop-region 

combinations. In total, 43 sources were accessed for canola, 57 for non-durum wheat, and 22 for field 

peas. These sources included complete data sets from LCI databases, as well as individual data points 

from peer-reviewed literature, and government and industry group publications and statistics. Overall, 

the identified sources included the majority of foreground data required for modeling crop-region 

combinations, with some minor data gaps as described in detail below. The following sections detail the 

best identified data for modeling each crop-region combination and associated data quality scores. 

Complete lists of all sources consulted for each of the three crops, the data available therein, and their 

associated data quality scores are appended as separate excel files. Preceding these sections, a single 

section is presented in which assumptions regarding manure inputs to foreground systems are 

described. This section is presented separately from each crop to avoid repetition between sections as 

the information therein is relevant for all crops receiving manure.  

2.5.6.1 Manure inputs 

Manure inputs were included in relevant crop-country combinations as inputs of organic fertilizers. 

As detailed previously in section 2.5.5.1, manure inputs were modeled as equivalent nutrient inputs 

from the specific crop-region combination fertilizer mix divided in half to reflect applications of synthetic 

fertilizers to crops fed to the animal recycled through the animals’ digestive systems. The exception to 
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this was the French pea production model in which manure inputs were the only source of applied N, 

and no inputs of synthetic N sources were included. Replacement of N from manure in the French pea 

production system therefore used the N fertilizer mix from the German pea production system. 

Application of this allocation principle required data regarding approximate N, P, and K contents of the 

manure inputs. In all cases, inputs of manure were stated to be from pigs and poultry (van Paassen et al. 

2019). Exact nutrient contents of different manures are dependent on dietary compositions and the 

amounts of different nutrients being taken in by the animals, as well as the form in which manure is 

managed (Galassi et al., 2010; Horf et al., 2022). This is reflected, for example, in differences in 

estimates of nutrient composition of pig slurry from Saskatchewan (Government of Saskatchewan, 

2022), Germany (Kuhn et al., 2018), Denmark (Sommer et al., 2014), and Czechia (Hlisnikovský et al., 

2022). The following assumptions were made regarding nutrient compositions of different manures. N 

and P contents of pig manure for all European were assumed to be the same as those in Germany in line 

with Kuhn et al. (2018), and assuming pig slurry has a density of 1000 kg/m3, within one standard 

deviation of average pig slurry densities as reported by Moral and Paredes (2005). K contents of pig 

manure for all European countries were assumed to be the same as those reported by Moral and 

Paredes (2005). N, P, and K contents of pig manure for Canada, and the U.S. were assumed to be the 

same as average values reported by the Government of Saskatchewan (2022), also assuming pig slurry 

has a density of 1000 kg/m3 (Moral and Paredes, 2005). N, P, and K contents of Canadian, American, and 

European poultry manures were assumed to be the same as those reported by Azeez and Van Averbeke 

(2010). While more regionalized nutrient contents could be determined for poultry manure from North 

American systems based on previously reported laying hen and broiler feed compositions (Pelletier, 

2008; Pelletier et al., 2014; Turner et al., 2022), the mix of manure attributable to different poultry 

species is unknown, making accurate calculations of appropriate manure nutrient contents difficult. 

Finally, nutrient contents for pig, and average nutrient contents for poultry manure for Australia were 

taken from the Australian Grains Research and Development Corporation (Griffiths, 2014). All assumed 

manure nutrient contents are reported in Table 9. Large losses of nutrients may occur during manure 

storage, after excretion but before manure is applied to fields (Bai et al., 2016; Tittonell et al., 2010). To 

take these factors into account, all assumed manure nutrient contents reported in Table 9 are contents 

following losses from manure storage systems. Therefore, all losses during storage are allocated to the 

animal production system that produced the manure, not to the crop systems currently being modelled.  

Table 9. Assumed percent nutrient contents of pig and poultry manure at time of application to field 

 North America Europe Australia 

 Pig Poultry Pig Poultry Pig Poultry 

N 0.389 3.71 0.598 3.71 1.9 3 

P 0.126 1.465 0.293 1.465 2.5 2.15 

K 0.168 1.795 0.226 1.795 0.7 1.3 

 

Based on the above information, data quality scores were assigned to those flows of synthetic 

fertilizers included in production models to replace nutrients from manure inputs, based on the quality 

of the sources from which nutrient contents were obtained. Rather than providing separate scores for 

pig and poultry manure, scores were assigned for each manure modeled as N fertilizers, P fertilizers, and 

K fertilizers. In each case, data quality scores were assigned to reflect the worst data quality between 
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the sources considered, thereby providing a conservative view of data quality related to modeling of 

manure inputs. Data quality scores for manure inputs to each country are presented in Tables 10-12.   

Manure nutrient contents were derived from the same sources for all Canadian and U.S. crop 

production systems, so they all received the same data quality scores. A score of 4 was given for 

reliability because it is unclear how many sites were sampled in determination of pig manure nutrient 

contents (Government of Saskatchewan, 2022). A score of 4 was given for completeness because the 

assumed nutrient compositions of poultry manure are taken from a single large supplier with little 

relevance to the markets being modeled (Azeez et al., 2010). A score of 5 was given for temporal 

correlation because the data collected for determining pig manure nutrient contents were collected 

from 1998-2000 (Government of Saskatchewan, 2022). A score of 5 was given for geographic correlation 

because the information on poultry manure nutrient content is based on estimates from a company in 

South Africa (Azeez et al., 2010). Finally, a score of 4 was given for technological correlation because 

manure is being modeled as upstream synthetic fertilizer inputs – that is, this data quality score does 

not reflect a limitation of the sources from which nutrient contents were taken, but rather a limitation 

of the modeling procedure used.     

Table 10. Data quality scores for manure inputs to Canadian and U.S. crop systems 

 Reliability Completeness Temporal 
correlation 

Geographic 
correlation 

Technological 
correlation 

Manure 
modeled as N 
fertilizer 

4 4 5 5 4 

Manure 
modeled as P 
fertilizer 

4 4 5 5 4 

Manure 
modeled as K 
fertilizer 

4 4 5 5 4 

 

 For German and French cropping systems, a score of 4 was given for reliability as nutrient 

contents are derived from qualified estimates (Kuhn et al., 2018). Similarly, a score of 4 was given for 

completeness as both the number of sites, and their relevance to the German and French markets are 

unknown. A score of 5 was given to temporal correlation because estimates of pig manure K contents 

are from a paper published in 2005 (Moral and Paredes, 2005) without any indication of when data was 

collected, so it was assumed to be 5 years prior to publication data, and because estimates of poultry 

manure nutrient contents were from 2006 (Azeez et al., 2010). Finally, a score of 4 was given for 

technological correlation for the same reasons as previously described for Saskatchewan, Canadian, and 

U.S. cropping systems.    

Table 11. Data quality scores for manure inputs to German and French crop systems 

 Reliability Completeness Temporal 
correlation 

Geographic 
correlation 

Technological 
correlation 
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Manure 
modeled as N 
fertilizer 

4 4 5 5 4 

Manure 
modeled as P 
fertilizer 

4 4 5 5 4 

Manure 
modeled as K 
fertilizer 

4 4 5 5 4 

  

 Finally, for Australian cropping systems, a score of 4 was given for reliability as nutrient content 

estimates provided by the GRDC were assumed to be based on expert opinion, as the original source 

from which they were derived is unavailable (Griffiths, 2014). The unavailability of this source also 

resulted in a score of 4 for completeness. A score of 5 was given for temporal correlation, as the 

estimates of manure nutrient contents are based on data collected in 1992. A score of 5 was given for 

geographic correlation because no explicit information was available indicating the geographic scope of 

the data that was collected. Finally, a score of 4 was given for technological correlation for the same 

reasons as previously described for Saskatchewan, Canadian, and U.S. cropping systems.    

Table 12. Data quality scores for manure inputs to Australian crop systems 

 Reliability Completeness Temporal 
correlation 

Geographic 
correlation 

Technological 
correlation 

Manure 
modeled as N 
fertilizer 

4 4 5 5 4 

Manure 
modeled as P 
fertilizer 

4 4 5 5 4 

Manure 
modeled as K 
fertilizer 

4 4 5 5 4 

 

2.5.6.2 Canola data sources 

Generally, data characterizing canola production systems for each crop-region combination were of 

relatively high quality. Of the canola combinations included, Saskatchewan canola production had the 

lowest data quality scores for transportation and post harvest energy use (table 13). This was driven by 

the relatively small number of sources (3) found that presented LCI data for canola production in 

Saskatchewan specifically. Of the sources considered, it was common for Saskatchewan to be presented 

as part of an aggregated data set representing production conditions in western Canada, rather than 

being presented on its own, or in a disaggregated format. There were, however, some data included for 

yields, herbicides, field level emissions and soil carbon changes that were of similar quality to those to 

be used for modeling average canola production in Canada (table 14).  
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Table 13 lists the data sources for each type of LCI data, and the quality of those data. A five year 

average (2018-2022) yield was calculated based on the yearly values from Statistics Canada (2022b). This 

year range was chosen since it is the most temporally up-to-date, and is sufficiently long to diminish the 

yield impacts of the anomalous 2021 year across all countries (Agriculture and Agri-Food Canada, 2021; 

USDA, 2022b). The data on fertilizer inputs came from the CRSC report, and were calculated based on 

the total amount of N, P, K and S indicated in the report, as well as the distribution of types of fertilizers 

used to supply each nutrient. Manure and lime inputs were excluded since the CRSC report indicates 

that they are applied in very small amounts. The total amounts of herbicide, insecticide and fungicide 

inputs came from the CRSC report ((S&T)2 Consultants Inc, 2021a), as well as the proportions of types 

(by active ingredient) of herbicides sold (used as a proxy for types of herbicides applied). The 

proportions of insecticide and fungicide active ingredients applied came from MacWilliam et al. (2016), 

since these were not indicated in the CRSC report. The N2O emissions calculated in the CRSC reports are 

based on the most recent, best practices for the IPCC methodology, with region-specific Tier 2 emission 

factors used and scaled up to provincial and national averages. Therefore, the N2O emission values for 

Saskatchewan and Canada were taken directly from the CRSC report rather than re-calculated. 

Table 13. Data sources used for modeling Saskatchewan canola production, and their associated 
pedigree matrix scores 

Data point Source to be 

used 

Reliability  Completeness Temporal 

correlation 

Geographical 

correlation 

Technological 

correlation 

Yield (and the 
inverse, land 
area) 

StatsCan, 
table 32-
10-059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Seed MacWilliam 
et al., 
(2016) 2 3 4 1 1 

Fertilizers CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 4 4 1 1 1 

Herbicides CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 1 1 2 3 4 

All other plant 
protection 

CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 
inventory 
data with 
distribution 
of types 
from 4 4 5 1 1 
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MacWilliam 
et al., 
(2016) 

Field activities 
energy use 

CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 2 1 1 1 1 

Transportation Distances 
from van 
Paassen et 
al. (2019) 2 3 4 1 2 

Post harvest CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 4 5 5 5 5 

Field level 
emissions of 
N2O  

CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 1 3 1 1 1 

CO2 emissions 
from lime and 
urea 

Calculated 
using IPCC 
methods 
and data 
from CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 1 3 1 1 1 

Soil carbon 
changes 

CRSC 
((S&T)2 
Consultants 
Inc, 2021a) 1 1 1 1 4 

   

Data characterizing Canadian average canola production were of relatively higher quality than the 

Saskatchewan-specific data (table 14). A total of five sources were identified as providing the highest 

quality data for all required inventory data. Notably, completeness scores for many of the data sources 

were assigned a value of three, indicating that they were either representative of less than 50% of 

Canadian canola supply, or the amount of supply was not indicated. As noted previously, a lack of 

reporting of the percentage of supply covered by samples used for collection of LCI data is common 

(Turner et al., 2020). The worst data quality score assigned for Canadian canola production was a score 

of 4 given to the technological correlation for the calculation of soil carbon changes. This score was 

assigned because the methods to be used do not differentiate between crops. However, the methods to 

be used are consistent with those used in calculation of the Canadian NIR (Environment and Climate 

Change Canada, 2022), and represent the current best practices for calculation of average soil organic 

carbon changes in the field crop sector.  
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Table 14 details the sources and quality of the data used for each LCI data category for Canadian 

canola production. As was done for Saskatchewan, a five year average yield (2018-2022) was calculated 

from Statistics Canada yearly values. Manure and lime inputs were excluded since the CRSC reports 

indicated that they were applied in very small amounts for Canada. Data for all other fertilizer inputs 

came from van Paassen et al. (2019). Some of the fertilizer inputs were listed as only “NPK compound” 
or “PK compound.” However for modelling upstream impacts, precise fertilizer products need to be 

defined. This was achieved by modelling the generic compounds as a mix of the fertilizer products also 

indicated by van Paassen et al. (2019), in a combination that includes the same amount of N, P, K and S 

nutrients. Since these fertilizer products were modelled as a proxy for the generic compounds indicated 

by van Paassen et al. (2019), the technological correlation for these amounts received a data quality 

score of 4, for related technology. The amounts of total pesticides applied came from van Paassen et al. 

(2019), however they do not indicate what types of herbicides, insecticides, and fungicides are applied. 

Therefore, the distribution of different pesticide inputs from Nemecek (2015) was used in combination 

with the total amounts from van Paassen et al. (2019). 

Table 14. Data sources to be used for modeling Canadian canola production, and their associated 
pedigree matrix scores 

Data point Source to 

be used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield  StatsCan, 
table 32-
10-059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Seed Alcock et 
al. (2022) 2 3 2 1 1 

All other 
nutrient 
inputs 

van 
Paassen et 
al., (2019)  

2 3 2 1 4 

All pesticides amounts 
from  van 
Paassen et 
al., (2019), 
types from 
Nemecek 
(2015) 

2 3 3 1 1 

Irrigation 
energy 

CRSC 
((S&T)2 
Consultant
s Inc, 
2021a) 

2 3 3 1 1 

Field activities 
energy use 

CRSC 
((S&T)2 
Consultant 2 1 1 2 1 
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s Inc, 
2021a) 

Transportatio
n 

distances 
from van 
Paassen et 
al. (2019) 

2 3 4 1 1 

Post harvest Alcock et 
al., (2022) 2 3 2 1 1 

N2O 
emissions 
(direct and 
indirect) 

CRSC 
((S&T)2 
Consultant
s Inc, 
2021a) 1 3 1 1 1 

CO2 
emissions 
from lime and 
urea 

van 
Paassen et 
al. (van 
Paassen et 
al., 2019) 

2 3 2 2 1 

Soil carbon 
changes 

CRSC 
((S&T)2 
Consultant
s Inc, 
2021a) 1 1 1 1 4 

   

Data characterizing Australian canola production were of similarly high quality (table 15). In total, 

12 sources were consulted to identify the best data for characterizing Australian canola production. As 

with the Canadian canola production data, many of the data sources for Australian canola production 

were assigned completeness scores of 3 for either not indicating the percentage of supply covered, or 

for covering less than 50% of the Australian canola supply. The highest quality data characterizing yields 

was the annual report of the Australian Oilseeds Federation (Australian Oilseeds Federation, 2021).This 

source does not directly report yield; rather, it reports total production and total land area used for 

growing canola in Australia, from which yields were subsequently calculated for the five-year period of 

2017-2021 (no data were available for 2022). Manure was excluded from the Australian canola 

production model since the literature review by Alcock et al. (2022) found that no manure was applied 

to Australian canola. Fertilizer inputs were modelled the same way as for Canada, with data sourced 

from van Paassen et al. (2019), and the “NPK compound” and “PK compound” flows were modelled 
using a mix of the other fertilizer inputs that gave the same nutrient inputs. 

Data on the total inputs of herbicides, fungicides and insecticides came from van Paassen et al. 

(2019), however they did not indicate what specific products or active ingredients were applied. Little 

information is available regarding the specific distribution of types of pesticides applied in Australian 

canola systems. Therefore, the following assumptions have been made regarding Australian pesticide 

mixes. Herbicides are assumed to be a mix of 18.36% glyphosate, and 81.64% atrazine, in line with the 

proportions indicated in the canola production data set from the AusLCI database (Tomkinson, 2013). 

Fungicides are assumed to be an equal proportion mix of foliar fungicides registered for use on canola in 

Western Australia for blackleg, sclerotinia stem rot, and white leaf spot (Beard and Hills, 2022), three 
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predominant fungal diseases of canola production systems in Australia (Van de Wouw et al., 2016). 

Similarly, insecticides are assumed to be an equal proportion mix of registered insecticides for control of 

mites and aphids (GRDC, 2018), two predominant insect pests affecting Australian canola crops (Arthur 

et al., 2015; Ward et al., 2021). 

Through data quality assessment and calculation of total uncertainty contributions from pedigree 

matrix entries, it was found that the use of data from van Paassen et al. (2019) for calculation of N2O 

emissions resulted in lower uncertainty than would use of data from the CSIRO canola carbon footprint 

report (Eady, 2017), in spite of its lower completeness score (i.e., a 3 rather than a 2). This is because the 

data from van Paassen et al. (2019) had a much higher data quality score for temporal correlation than 

the data from the CSIRO report (i.e., a 1 rather than a 5). When combined with the uncertainty factors 

presented by Ciroth et al. (2016) the combination of scores attributable to data from van Paassen et al. 

(2019) resulted in a lower overall uncertainty score than that of the CSIRO report (Eady, 2017).      

Table 15. Data sources to be used for modeling Australian canola production, and their associated 
pedigree matrix scores 

Data point Source to 

be used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield  Australian 
Oilseeds 
Federation 
Annual 
report 
(Australian 
Oilseeds 
Federation
, 2021) 1 3 1 1 1 

Seed Alcock et 
al., (2022) 2 3 2 1 1 

Lime Alcock et 
al., (2022) 2 3 2 1 1 

All other 
nutrient 
inputs 

van 
Paassen et 
al., (2019) 

1 3 2 1 4 

All pesticides total 
amounts 
from van 
Paassen et 
al., (2019), 
distributio
n from 
AusLCI 
and 
registered 
products 

4 3 4 1 1 



33 
 

Field activities 
energy use 

van 
Paassen et 
al., (2019) 

2 3 2 1 1 

Transportation distances 
from van 
Paassen et 
al., (2019) 

2 3 4 1 1 

Post harvest Alcock et 
al., (2022) 2 3 2 1 1 

N2O emissions 
(direct and 
indirect) 

van 
Paassen et 
al., (2019) 

2 3 1 2 1 

CO2 emissions 
from lime and 
urea 

IPCC 
methods 
with data 
from 
Alcock et 
al., (2022)  

2 3 2 1 1 

Soil carbon 
changes 

NIR 
methods 
(Governm
ent of 
Australia, 
2022) 1 1 1 1 4 

 

Data sources used for modeling French canola production are presented in table 16. These data are 
of similarly high quality, with the majority of data being sourced from van Paassen et al. (2019), or from 
Alcock et al. (2022). A total of 11 sources were consulted in identifying French canola production data. 
The yield value was calculated as a five year average from 2018-2022 from the EU Oilseed and Protein 
Crop Production report (2022a). Fertilizer data were sourced from van Paassen et al. (2019), with the 
same fertilizer mix proxies used for “NPK compound” and “PK compound”. Manure inputs were included 
for France, and the amounts and types came from van Paassen et al. (2019). As described in section 
2.5.5.1 (Manure allocation methods), the total nutrient contents of these manures were determined, 
and they were modelled as a mix of synthetic fertilizers that provide those nutrients. This was done to 
avoid allocating the impacts of the animal production system, and to instead include the impacts of the 
original production of the fertilizers that were used to fertilize the crops that fed the animals that 
produced the manure. As described in section 2.5.6.4, all manure data sources received poor data 
quality scores since some values used in the calculations came from expert opinion from over 15 years 
ago, including nutrient contents representative of South Africa. As was done for Canada and Australia, 
total amounts of herbicide, fungicide, and insecticide inputs were sourced from van Paassen et al. 
(2019). Information on pesticide mixes used in France were taken from Agreste (Agreste, 2022). 

As with the Australian data, data from van Paassen et al. (2019) were used in the calculation of N2O 
emissions, and CO2 emissions attributable to lime and urea application despite some other sources 
having potential higher quality data for individual indicators. Specifically, data from Nguyen et al. (2012) 
received a higher completeness score than that of van Paassen et al. (2019), but received a considerably 
worse score for technological correlation (i.e., 5 as opposed to 1). Since poor technological correlation is 
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the largest overall contributor to uncertainty from pedigree matrix entries (Ciroth et al., 2016) these 
data were associated with higher levels of uncertainty for modelling of N2O emissions. Similarly, the 
method for modeling soil carbon changes used by Ben Aoun et al. (2016) resulted in lower total 
uncertainty than those proposed to be used here. However, they used the CERES-EGC model (Gabrielle 
et al., 2006), a process-based model for simulation of soil carbon dynamics. Use of process-based 
models requires significant expertise to properly parametrize the models, and these models generally 
have large context-specific data requirements making their implementation challenging (Adams et al., 
2013). While the results of these models may provide more accurate estimates of soil carbon changes 
associated with French canola production in specific geographical/temporal contexts, the use of 
process-based models is outside the scope of the current analysis. Rather, use of the methods proposed 
herein (which are consistent with the French NIR (CCNUCC, 2022)) represent best practices for the 
current analysis.    

Table 16. Data sources to be used for modeling French canola production, and their associated pedigree 
matrix scores 

Data point Source to 

be used 

Reliability  Completeness Temporal 

correlation 

Geographical 

correlation 

Technological 

correlation 

Yield EU Oilseed 
and 
Protein 
Crop 
production 
(2022a)  1 1 1 1 1 

Seed Alcock et 
al., (2022) 2 3 2 1 1 

Lime Alcock et 
al., (2022) 2 3 2 1 1 

All other 
fertilizer 
inputs 

van 
Paassen et 
al., (2019) 

2 3 2 1 4 

Manure inputs 
from van 
Paassen et 
al. (2019), 
modelled 
as 
fertilizer 
inputs 
based on 
nutrient 
contents 
from 
Azeez and 
Van 
Averbeke 
(2010), 
Kuhn et al. 

4 4 5 5 4 
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(2018), 
and Moral 
and 
Paredes 
(2005) 

All pesticides amounts 
from van 
Paassen et 
al., (2019), 
types from 
Agreste 
2022 

1 3 2 1 1 

Irrigation 
energy 

van 
Paassen et 
al., (2019) 

2 3 2 1 1 

Field activities 
energy use 

van 
Paassen et 
al., (2019) 

2 3 2 1 1 

Transportation van 
Paassen et 
al., (2019) 

2 3 4 1 1 

Post harvest Alcock et 
al., (2022) 2 3 2 1 1 

N2O emissions 
(direct and 
indirect) 

Modeled 
with data 
from van 
Paassen et 
al., (2019) 

1 3 2 1 1 

CO2 emissions 
from lime and 
urea 

Modeled 
with data 
from 
Alcock et 
al., (2022) 2 3 2 1 1 

Soil carbon 
changes 

NIR 
methods 
(CCNUCC, 
2022) 1 1 1 1 4 

 

Finally, data characterizing German canola production were of similarly high quality. A total of 10 

sources were consulted to identify potential data for use in modeling. Fertilizers, manures and pesticides 

were modelled using the same methods as France. Information on the distribution of pesticides applied 

to German canola systems were taken from Nordborg et al. (2014). As with previous data sets, data 

from van Paassen et al. (2019) were used in modeling of N2O emissions in spite of its lower 

completeness score than data sourced from O’Keeffe et al. (2017). The former data is of poorer quality 

with respect to temporal correlation, resulting in higher overall uncertainty (table 17).   
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Table 17. Data sources to be used for modeling German canola production, and their associated 
pedigree matrix scores 

Data point Source to be 

used 

Reliability  Completeness Temporal 

correlation 

Geographical 

correlation 

Technological 

correlation 

Yield (and the 
inverse, land 
area) 

EU Oilseed 
and Protein 
Crop 
production 
(European 
Commission, 
2022a) 1 1 1 1 1 

Seed Alcock et al., 
(2022) 2 3 2 1 4 

Lime Alcock et al., 
(2022) 2 3 2 1 1 

All other 
fertilizer 
inputs 

van Paassen 
van Paassen 
et al., (2019) 

1 3 2 1 1 

Manure 
(modelled as 
fertilizer) 

van Paassen 
et al. (2019) 
for amounts, 
based on 
nutrient 
contents 
from Azeez 
and Van 
Averbeke 
(2010), Kuhn 
et al. (2018), 
and Moral 
and Paredes 
(2005) 

4 4 5 5 4 

All pesticides amounts 
from van 
Paassen et 
al., (2019), 
types from 
Nordborg et 
al. (2014) 

2 3 3 1 1 

Irrigation 
energy 

(Nemecek, 
2007b) 

2 3 4 1 1 

Field activities 
energy use 

van Paassen 
et al., (2019) 

2 3 2 1 1 

Transportation distances 
from van 
Paassen et 
al., (2019) 

2 3 4 1 1 
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Post harvest Alcock et al., 
(2022) 2 3 2 1 1 

N2O emissions 
(direct and 
indirect) 

Modeled 
using data 
from van 
Paassen et 
al. (2019) 

1 3 2 1 1 

CO2 emissions 
from lime and 
urea 

Modeled 
using data 
from Alcock 
et al. (2022) 2 3 2 1 1 

Soil carbon 
changes 

Modeled 
using NIR 
methods 
(Federal 
Environment 
Agency, 
2022) 1 1 1 1 4 

 

2.5.6.3 Non-durum wheat data sources 

Data characterizing Saskatchewan wheat production were, with few exceptions, of fairly high 

quality (table 18). Data for grain yield came from Statistics Canada (2020), and data for the amount of 

straw removed came from Lafond et al. (2009), and Statistics Canada (2022b, 2021b). The amount of 

straw removed was used as the co-product of wheat grain production (see section 2.5.5.2 for the 

methods of allocation between co-products). It was also subtracted from the amount of above-ground 

residue produced for calculations of N2O emissions from crop residue (see section 2.5.8.3).   

Scores of 4 for reliability and completeness were assigned to data characterizing seed and nutrient 

inputs, field activity energy use, transportation, and post-harvest energy use. These data were based on 

expert opinion or recommendations, rather than data that directly represented practices on farms. The 

data sourced from van Paassen et al., (2019) for Canadian seed inputs are from 2013, and for post-

harvest drying energy use are from a source published in 2010. The proportion of straw removed from 

fields received a score of 2 for reliability, as this data was based on experimental measures investigating 

proportions of straw removed by common baling machinery in Saskatchewan. However, this data 

received scores of 4 for completeness and 5 for temporal correlation because only a small number of 

experimental sites were considered, and data was collected during the 2002-2005 growing seasons. 

Data on the total amounts of herbicides, insecticides and fungicides came from the CRSC report, as well 

as data on the types of herbicides applied. However, they did not report the types of insecticides and 

fungicides applied, therefore this information was taken from Nemecek (2015a) in combination with the 

total amounts from the CRSC report. The data for pesticide inputs from the CRSC report ((S&T)2 

Consultants Inc., 2021b) are representative of the province of Alberta, rather than the province of 

Saskatchewan, or the entirety of Canada.  
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Similar to canola, changes in soil carbon are to be estimated using methods from the Canadian NIR 

(Environment and Climate Change Canada, 2022), which do not provide crop-specific estimates of soil 

carbon change, hence leading to the score of 4 for technological correlation.    

Table 18. Data sources to be used for modeling Saskatchewan non-durum wheat production, and their 
associated pedigree matrix scores 

Data point Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield (grain) StatsCan, 
table 32-
10-059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Straw 
removed 

Lafond et 
al. (2009) 2 4 5 1 1 

Seed CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 4 4 1 1 1 

Nutrient 
inputs 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 4 4 1 1 1 

Herbicide 
inputs 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 1 1 2 3 1 

Other 
pesticide 
inputs 

Total 
amounts 
from CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b), 
fungicide 
and 
insecticide 
types from 2 3 3 3 1 
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Nemecek 
(2015) 

Field activity 
energy use 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 4 4 1 1 1 

Transportatio
n diesel 

van 
Paassen et 
al. 2019 

2 3 4 1 1 

Post-harvest 
energy use 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b)  4 4 2 2 2 

Direct and 
indirect N2O 
emissions 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b), 
scaled to 
account for 
assumed 
residue 
removal 
rates 1 3 1 1 1 

CO2 
emissions 
from urea 

Calculated 
using IPCC 
methods 
based on 
urea inputs 
from CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 2 3 1 2 1 

Soil carbon 
changes 

CRSC 
report 
((S&T)2 
Consultant
s Inc., 
2021b) 1 1 1 1 4 
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Data characterizing Canadian-average production of non-durum wheat were also of generally 

high quality (table 19). Proxy data from Saskatchewan were used for calculation of the amount of wheat 

straw removed. Fertilizer data came from van Paassen et al. (2019) and were of relatively high quality, 

however they received a score of 3 for technological correlation since proxy fertilizers were modelled 

when van Paassen et al. (2019) indicated an application of “NPK product” and “PK product” (as 
described in the canola section). Similar to the Saskatchewan average data, transportation of field inputs 

is an area of relatively poor data quality, indicating that this should be a focus for data collection 

improvements during future studies. The data sourced from van Paassen et al. (2019) for Canadian seed 

inputs are from 2013, and the data from the CRSC report on post-harvest drying energy use are from 

expert opinion.  

Table 19. Data sources to be used for modeling Canadian non-durum wheat production, and their 
associated pedigree matrix scores 

Data point Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographic

al 

correlation 

Technologic

al 

correlation 

Yield (grain) StatsCan, 
table 32-10-
059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Straw 
removed 

Lafond et al. 
(2009) 2 4 5 1 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

All fertilizer 
inputs 

van Paassen 
et al. (2019) 

1 3 2 1 3 

Manure 
inputs 
(modelled as 
fertilizers) 

van Paassen 
et al. (2019), 
based on 
nutrient 
contents 
from 
Government 
of 
Saskatchewa
n (2022) and 
Azeez and 
Van 
Averbeke 
(2010) 

4 4 5 5  4 

All pesticide 
inputs 

CRSC report 
((S&T)2 
Consultants 
Inc., 2021b), 1 3 2 2 1 
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fungicide and 
insecticide 
types from 
Nemecek 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Fuel use for 
field activities 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Transportatio
n of field 
inputs 

van Paassen 
et al. (2019) 

2 3 4 1 1 

Post-harvest 
energy use 

CRSC report 
((S&T)2 
Consultants 
Inc., 2021b) 

4 4 2 2 2 

Direct and 
indirect N2O 
emissions 

((S&T)2 
Consultants 
Inc., 2021b) 
scaled to 
account for 
assumed 
residue 
removal 
rates 1 3 1 1 1 

CO2 
emissions 
from lime and 
urea 

van Paassen 
et al. (2019) 

2 3 2 2 1 

Soil carbon 
changes 

CRSC report 
((S&T)2 
Consultants 
Inc., 2021b) 1 1 1 1 4 

 

In general, the available LCI data for Australian wheat production were of fairly high quality (table 

20). The sources of data for seed, lime inputs, and transportation from van Paassen et al., (2019) are all 

around 10 years old at the time of writing this report. Proxy data from Saskatchewan were used for 

calculation of the amount of wheat straw removed. This data was collected using experimental 

measures from a small number of sites throughout southern New South Wales in 2014 (Broster and 

Walsh, 2022). The choice of data to characterize post-harvest energy inputs was difficult due to 

differences in final moisture content after grain drying between sources. The data on post-harvest 

energy use from Nemecek (2015) received the best data quality score (i.e., lowest associated 

uncertainty) of all the possible sources, despite being representative of processes in Switzerland rather 

than Australia, and being greater than 10 years old resulting in scores of 5 for completeness, and 4 for 

geographical correlation. However, these data are presented in terms of amount of moisture removed 

from the grain after drying, while data from van Paassen et al. (2019) present post-harvest energy use in 

terms of amount of dried grain. To avoid relying on additional sources of data to calculate the amount of 
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moisture removed, and for methodological consistency in data sources, data on post-harvest energy use 

has been taken from van Paassen et al. (2019).  

Table 20. Data sources to be used for modeling Australian non-durum wheat production, and their 
associated pedigree matrix scores 

Data point Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologic

al 

correlation 

Yield (grain) van Paassen 
et al. (2019) 

1 3 2 1 1 

Straw 
removed 

Lafond et al. 
(2009) 

2 4 5 3 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

Lime inputs van Paassen 
et al. (2019) 

2 3 3 1 1 

Fertilizer 
inputs 

van Paassen 
et al. (2019) 

1 3 2 1 3 

Manure 
inputs 

Amounts 
based on 
van Paassen 
et al. (2019) 
and nutrient 
contents 
from 
(Griffiths, 
2014) 

4 4 5 5 4 

Herbicide, 
fungicide and 
insecticide 
inputs 

total 
amounts 
from van 
Paassen et 
al. (2019), 
types from 
Nemecek 

2 3 3 1 1 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Field activities 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Transportatio
n 

van Paassen 
et al. (2019) 

2 3 3 1 1 

Post-harvest 
energy use 

van Paassen 
et al. (2019) 

2 5 3 4 1 

Direct and 
indirect N2O 
emissions 

Modelled 
using IPCC 
Tier 2 with N 
input data 1 3 2 1 1 
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from van 
Paassen et 
al. (2019)  

CO2 
emissions 
from lime and 
urea 

van Paassen 
et al. (2019) 

2 3 2 2 1 

Soil carbon 
changes 

Modelled 
using NIR 
data 
(Governmen
t of 
Australia, 
2022) 1 1 1 1 4 

 

The data sources for French and German wheat production are similar, and have overall high 

quality (tables 21-22). The data from van Paassen et al., (2019) for seed and transportation of field 

inputs are 9 years old, and assumed to be 14 years old based on time of publication respectively, at the 

time of writing this report. Proxy data from Saskatchewan were used for calculation of the amount of 

wheat straw removed from both the French and German production systems. As with Australian wheat 

production, post-harvest energy use data has been taken from van Paassen et al. (2019) rather than 

Nemecek (2007b) for the same reason as previously described. For pesticide inputs for France, data on 

the total amounts of herbicides, fungicides, and insecticides were taken from van Paassen et al. (2019), 

and data on the specific types of plant protection products came from Agreste (Agreste, 2022) for 

herbicides and fungicides, and Nemecek (2007b) for insecticides. The Nemecek insecticide data were 

valid from 2000-2004, extrapolated to the year 2021 (without an explanation of how this was done), and 

thus have a data quality score of 4 for temporal correlation. Some of the herbicides and fungicides 

indicated by Agreste (Agreste, 2022) did not have representative background production inventories in 

ecoinvent, therefore they were modelled as the generic “pesticide, unspecified”, which gave them a 
technological correlation of 4. Similarly for Germany, the types of pesticides came from Nordborg et al. 

(2014), and some of these pesticide types were modelled as “pesticide, unspecified”. For soil carbon 

change for France, Muñoz et al. (2014) had data of higher quality than is achievable via modelling using 

the NIR values since it was modelled specifically for wheat, whereas the NIR is not crop specific. 

However, for consistency with the data available for all countries, we have chosen to model soil carbon 

changes according to the NIR model. 

Table 21. Data sources to be used for modeling French non-durum wheat production, and their 
associated pedigree matrix scores 

Data point Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield (grain) Eurostat 
Database 1 1 1 1 1 

Straw 
removed 

Lafond et 
al. (2009) 

2 4 5 3 1 
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Seed van 
Paassen 
et al. 
(2019) 

1 3 3 1 1 

Lime van 
Paassen 
et al. 
(2019) 

1 3 2 1 1 

Fertilizers van 
Paassen 
et al. 
(2019) 

1 3 2 1 3 

Manure 
(modelled as 
fertilizers) 

van 
Paassen 
et al. 
(2019) 
for 
amounts, 
based on 
nutrient 
contents 
from 
Azeez 
and Van 
Averbeke 
(2010), 
Kuhn et 
al. 
(2018), 
and 
Moral 
and 
Paredes 
(2005) 

4 4 5 5 4 

Herbicide and 
fungicide 
inputs 

total 
amounts 
from van 
Paassen 
et al. 
(2019), 
types 
from 
Agreste 
(Agreste, 
2022) 
 

1 3 2 1 4 
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Insecticide 
inputs 

total 
amounts 
from van 
Paassen 
et al. 
(2019), 
types 
from 
Nemecek 
(2007b) 
 

2 3 4 1 1 

Irrigation 
energy use 

van 
Paassen 
et al. 
(2019) 

2 3 2 1 1 

Field activities 
energy use 

van 
Paassen 
et al. 
(2019) 

2 3 2 1 1 

Transportatio
n of field 
inputs 

van 
Paassen 
et al. 
(2019) 

2 3 4 1 1 

Post-harvest 
energy use 

van 
Paassen 
et al. 
(2019) 

2 5 3 4 1 

Direct and 
indirect N2O 
emissions 

Modelled 
using 
IPCC Tier 
2 
methods 
with N 
input 
data 
from van 
Paassen 
et al. 
(2019) 1 3 2 1 1 

CO2 emissions 
from lime and 
urea 

van 
Paassen 
et al. 
(2019) 

2 3 2 2 1 

Soil carbon 
changes 

Modelled 
using NIR 
values 1 1 1 1 4 



46 
 

(CCNUCC
, 2022) 

 

Table 22. Data sources to be used for modeling German non-durum wheat production, and their 
associated pedigree matrix scores 

Data point Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield (grain) European 
Commission 
(2022) 1 1 1 1 1 

Straw 
removed 

Lafond et al. 
(2009) 

2 4 5 3 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

Lime van Paassen 
et al. (2019) 

1 3 2 1 1 

Fertilizer 
inputs 

van Paassen 
et al. (2019 

1 3 2 1 3 

Manure 
(modelled as 
fertilizer 
inputs) 

van Paassen 
et al. (2019) 
for 
amounts, 
based on 
nutrient 
contents 
from Azeez 
and Van 
Averbeke 
(2010), 
Kuhn et al. 
(2018), and 
Moral and 
Paredes 
(2005) 

4 4 5 5 4 

All pesticide 
inputs 

total 
amounts 
from van 
Paassen et 
al. (2019), 
types from 
Nordborg et 
al. 2014 

1 3 2 1 4 

Irrigation 
energy use 

van Paassen 
et al. (2019) 

2 3 2 1 1 
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Field activities 
energy use 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Transportatio
n of field 
inputs 

van Paassen 
et al. (2019) 2 3 4 1 1 

Post-harvest 
energy use 

van Paassen 
et al. (2019) 

2 5 3 4 1 

Direct and 
indirect N2O 
emissions 

Modelled 
using IPCC 
Tier 2 
methods 
with N input 
data from 
van Paassen 
et al. (2019) 1 3 2 1 1 

CO2 
emissions 
from lime and 
urea 

van Paassen 
et al. (2019) 

2 3 2 2 1 

Soil carbon 
changes 

Modelled 
using NIR 
values 
(Federal 
Environmen
t Agency, 
2022) 1 1 1 1 4 

 

The available data for wheat production in the U.S. was of high quality (table 23). The main sources 

for data are van Paassen et al. (2019) and the USDA LCA Commons (USDA-National Agricultural Library, 

2014). In fact, the data in van Paassen et al. (2019) were taken from the USDA LCA Commons, and 

modified for simplicity as well as correcting reported errors in the original data. For this reason, the van 

Paassen et al. (2019) data were preferentially sourced over the USDA LCA Commons data when they are 

both indicated in the table. Proxy data from Saskatchewan were used for calculation of the amount of 

wheat straw removed. These data were based on qualified estimates and econometric modeling of the 

removal of corn stover for use in production of ethanol from lignocellulosic biomass (Juneja et al. 2103). 

Data for amounts and types of fertilizer inputs were taken from van Paassen et al. (2019). While higher 

quality data for amounts of fertilizers was available from the NASS (USDA, 2020), these numbers are 

only presented in terms of total nutrients applied, rather than in terms of products applied. Some data 

points (seed, field activities, transport and post-harvest) had lower data quality for temporal correlation 

since they are all almost 10 years old at the time of writing this report. Post-harvest energy use data was 

taken from van Paassen et al. (2019) as previously described 
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Table 23. Data sources to be used for modeling US non-durum wheat production, and their associated 
pedigree matrix scores 

Data 

point 

Source Reliabilit

y 

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield 
(grain) 

NASS report 
(USDA, 2020) 1 1 1 1 1 

Straw 
removed 

Lafond et al. 
(2009) 2 4 5 3 1 

Seed van Paassen 
et al. (2019)  

2 1 2 1 1 

Lime  van Paassen 
et al. (2019) 
(USDA-
National 
Agricultural 
Library, 2014) 

2 1 3 1 1 

Manure van Paassen 
et al. (2019), 
based on 
nutrient 
contents from 
Government 
of 
Saskatchewan 
(2022) and 
Azeez and 
Van Averbeke 
(2010) 

4 4 5 5 4 

All 
fertilizer 
inputs 

van Paassen 
et al. 
(2019)/USDA 
LCA Commons 
(USDA-
National 
Agricultural 
Library, 2014) 

2 1 2 1 3 

Herbicide, 
fungicide, 
insecticid
e inputs 

NASS 
database 
(USDA-NASS, 
2022) 1 1 1 1 4 

Irrigation 
energy 
use 

van Paassen 
et al. 
(2019)/USDA 
LCA Commons 
(USDA-
National 

1 1 2 1 1 
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Agricultural 
Library, 2014) 

Field 
activities  

van Paassen 
et al. 
(2019)/USDA 
LCA Commons 
(USDA-
National 
Agricultural 
Library, 2014) 

2 1 3 1 1 

Transport 
of field 
inputs 

van Paassen 
et al. 
(2019)/USDA 
LCA Commons 
(USDA-
National 
Agricultural 
Library, 2014) 

2 1 3 1 1 

Post-
harvest 
energy 
use 

van Paassen 
et al. (2019) 

2 5 3 4 1 

Direct and 
indirect 
energy 
use 

Calculated 
using IPCC 
Tier 2 
methods and 
N inputs from 
van Paassen 
et al. (2019) 1 1 2 1 1 

CO2 
emissions 
from lime 
and urea 

van Paassen 
et al. (2019) 

2 1 2 2 1 

Soil 
carbon 
changes 

Calculated 
using NIR 
methods (U.S. 
Environmenta
l Protection 
Agency, 2022) 1 1 1 1 4 

2.5.6.4 Field pea data sources 

A total of three sources were consulted for Saskatchewan, and five sources were consulted for 

Canadian field pea production. In contrast to both canola and non-durum wheat, both Saskatchewan 

and Canadian field pea production may be characterized by data of very high quality (tables 24-25). This 

is a result of a recently completed project by Bamber et al. (2020) for Pulse Canada. In this project, 

survey data was collected characterizing farm-level inputs for over 600 pea and lentil producers, 

including a large sample from Saskatchewan pea producers. These data were used, with few exceptions. 
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Specifically, data characterizing transportation of inputs to farms are taken from van Paassen et al. 

(2019). Data on irrigation energy for the Canadian model was taken from van Paassen et al. (2019). All 

other data in both the Saskatchewan and Canadian models were taken from Bamber et al. (2020), 

adjusted to take into account changes in yield since initial data collection. The input values for inoculant 

were partially based on expert opinion, therefore they received a score of 4 for both reliability and 

completeness. The data on types and amounts of pesticide active ingredients applied from (Bamber et 

al., 2020) are representative of the technology used on Canadian and Saskatchewan farms, however 

background production datasets for each chemical type are not available in ecoinvent. For this reason, 

some pesticide products were modelled using the generic “pesticide, unspecified” process. This proxy 

resulted in a data quality indicator of 4 for technological correlation. Importantly, data on types of 

pesticides applied are limited in the appended excel file which represents the processes available in 

ecoinvent at the time of the creation of the dataset. However, the full lists of pesticide products are 

available for use in the current analysis, and are presented in the appended LCI excel files. The N credit 

from N fixed by the peas that is made available to the next crop in rotation was calculated based on data 

from research in Western Canada (Barker, 2007). This source is over 15 years old, therefore it received a 

5 for temporal correlation. The N credit was modelled as an avoided use of ammonia fertilizer for the 

next crop in the rotation, therefore it received a 4 for technological correlation due to this proxy. 

Table 24. Data sources to be used for modeling Saskatchewan dried field pea production, and their 
associated pedigree matrix scores 

Data point Source to be 

used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographic

al 

correlation 

Technologic

al 

correlation 

Yield  StatsCan, 
table 32-10-
059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Seed Bamber et 
al. (2020) 

1 3 1 1 1 

Inoculant Bamber et 
al. (2020) 

1 3 1 1 2 

Fertilizer 
inputs 

Bamber et 
al. (2020) 

1 3 1 1 1 

Pesticides Bamber et 
al. (2020) 

1 3 1 1 4 

Field activities 
energy use 

Bamber et 
al. (2020) 

1 3 1 1 1 

Transportatio
n 

van Paassen 
et al. 2019 

2 3 4 1 1 

Post harvest Bamber et 
al. (2020) 

1 3 1 1 1 

N2O 
emissions 

CRSC values 
scaled to N 
inputs from 

1 3 1 1 1 
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(direct and 
indirect) 

Bamber et 
al. (2020) 

CO2 
emissions 
from lime and 
urea 

Bamber et 
al. (2020) 

1 3 1 1 1 

Soil carbon 
changes 

NIR methods 
(Environmen
t and 
Climate 
Change 
Canada, 
2022) 1 1 1 1 4 

N credit Barker 
(2007) 2 3 5 1 4 

 

Table 25. Data sources to be used for modeling Canadian dried field pea production, and their 
associated pedigree matrix scores 

Data point Source to be 

used 

Reliabili

ty  

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield  StatsCan, 
table 32-10-
059-10 
(Statistics 
Canada, 
2022b) 1 2 1 1 1 

Seed Bamber et al. 
(2020) 

1 3 1 1 1 

Inoculant Bamber et al. 
(2020) 

4 4 1 1 2 

Fertilizer 
inputs 

Bamber et al. 
(2020) 

1 3 1 1 1 

All pesticides Bamber et al. 
(2020) 

1 3 1 1 4 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Field activities 
energy use 

Bamber et al. 
(2020) 

1 3 1 1 1 

Transportatio
n 

van Paassen 
et al. (2019) 

2 3 4 1 1 

Post harvest Bamber et al. 
(2020) 

1 3 1 1 1 

N2O 
emissions 

CRSC values 
scaled to N 
inputs from 

1 3 1 1 1 
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(direct and 
indirect) 

Bamber et al. 
(2020) 

CO2 
emissions 
from lime and 
urea 

Bamber et al. 
(2020) 

1 3 3 1 1 

Soil carbon 
changes 

NIR methods 
(Environment 
and Climate 
Change 
Canada, 
2022) 1 1 1 1 4 

N credit Barker (2007) 2 3 5 1 4 

 

Data characterizing French and German field pea production are generally of high quality, with the 

majority of data in both cases sourced from van Paassen et al. (2019) (tables 26-27). Yield data were 

taken from the EuroStat database, a publicly available repository for a variety of data from European 

Union member states (European Commission, 2022b). For both France and Germany, post-harvest 

energy use could not be sourced from van Paassen et al. (2019) as it is excluded from the datasets 

presented. Rather, this data had to be sourced from Nguyen et al. (2012), which used data with errors 

corrected from Nemecek (2007e, 2007f), where it was representative of survey data originally collected 

from 2000-2004, and extrapolated to 2021. Similarly, inputs of synthetic N fertilizers to German pea 

production systems was also sourced from Nemecek (2007c), as the data available from van Paassen et 

al. (2019) do not include synthetic N sources, and only include N derived from pig and chicken manure 

application. Inputs of inoculant were modelled based on the Canadian average data from Bamber et al. 

(2020), since no data were available on inoculant inputs for France and Germany, but it was assumed 

that inoculants were used since these contribute to the N-fixing ability of peas (Clayton et al., 2004). The 

N credit for French and German peas was calculated based on GL-Pro (2005), which indicated that wheat 

grown after peas could use 20-25% less fertilizer. Therefore, the N credit was calculated as 20% of the N 

fertilizer amount applied to French and German wheat, and modelled as an avoided ammonia input. 

Table 26. Data sources to be used for modeling French dried field pea production, and their associated 
pedigree matrix scores 

Data point Source to 

be used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield (and the 
inverse, land 
area) 

Eurostat 
database 
(European 
Commission
, 2022b) 1 1 1 1 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

Lime van Paassen 
et al. (2019) 

2 3 3 1 1 
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Inoculant Bamber et 
al. 2020a 

4 4 1 4 2 

All other 
fertilizer 
inputs 

van Paassen 
et al. (2019) 1 3 2 1 1 

Manure 
inputs 
(modelled as 
fertilizers) 

van Paassen 
et al. (2019) 
for 
amounts, 
based on 
nutrient 
contents 
from Azeez 
and Van 
Averbeke 
(2010), 
Kuhn et al. 
(2018), and 
Moral and 
Paredes 
(2005) 

4 4 5 5 4 

All pesticides total 
amounts 
from van 
Paassen et 
al. (2019), 
distribution 
from 
Nemecek 
2007 

1 3 2 1 1 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Field activities 
energy use 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Transportatio
n 

van Paassen 
et al. (2019) 

2 3 4 1 1 

Post harvest Nemecek 
2007 and 
Nguyen 
2012  

2 3 4 3 2 

N2O 
emissions 
(direct and 
indirect) 

Modeled 
using data 
from van 
Paassen et 
al. (2019) 

1 3 2 1 1 

CO2 
emissions 

Modeled 
using data 

2 3 3 1 1 
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from lime and 
urea 

from van 
Paassen et 
al. (2019) 

Soil carbon 
changes 

NIR 
methods 
(CCNUCC, 
2022) 1 1 1 1 4 

N credit GL-Pro 
(2005) 

1 3 5 1 4 

   

Table 27. Data sources to be used for modeling German dried field pea production, and their associated 
pedigree matrix scores 

Data point Source to 

be used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographica

l correlation 

Technologica

l correlation 

Yield (and the 
inverse, land 
area) 

Eurostat 
database 
(European 
Commission
, 2022b) 1 1 1 1 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

Inoculant Bamber et 
al. 2020a 

4 4 1 4 2 

Lime van Paassen 
et al. (2019) 

2 3 3 1 1 

N fertilizer Nemecek 
(2007f) 

4 3 4 1 1 

All other 
fertilizer 
inputs 

van Paassen 
et al. (2019) 1 3 1 1 1 

Manure 
(modelled as 
fertilizer 
inputs) 

van Paassen 
et al. (2019) 
for 
amounts, 
based on 
nutrient 
contents 
from Azeez 
and Van 
Averbeke 
(2010), 
Kuhn et al. 
(2018), and 
Moral and 

4 4 5 5 4 
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Paredes 
(2005) 

All pesticides total 
amounts 
from van 
Paassen et 
al. (2019), 
types from 
Nemecek 
2007f 

1 3 2 1 1 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Field activities 
energy use 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Transportatio
n 

van Paassen 
et al. (2019) 

2 3 4 1 1 

Post harvest Nemecek 
(2007f) and 
Nguyen et 
al 2012 

4 3 4 1 1 

N2O 
emissions 
(direct and 
indirect) 

Modeled 
with data 
from van 
Paassen et 
al. (2019) 

1 3 2 1 1 

CO2 
emissions 
from lime and 
urea 

Modeled 
with data 
from van 
Paassen et 
al. 2019 

2 3 2 2 1 

Soil carbon 
changes 

NIR 
methods 
(Federal 
Environmen
t Agency, 
2022) 1 1 1 1 4 

N credit GL-Pro 
(2005) 

1 3 5 1 4 

   

Finally, data characterizing U.S. field pea production were of generally high quality, with most 

requisite data sourced from van Paassen et al. (2019) (table 28). Inoculant input data came from the 

Canadian average from Bamber et al. (2020a). None of the sources consulted included estimates of 

post-harvest energy use for U.S. field pea production. This gap was filled using data adapted from 

Canadian production conditions as presented by Bamber et al. (2020a). The N credit was calculated 

using the same source as the Canadian data, which was based on research from Western Canada (Barker 

2007). 
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Table 28. Data sources to be used for modeling U.S. field pea production, and their associated pedigree 
matrix scores 

Data point Source to be 

used 

Reliabilit

y  

Completenes

s 

Temporal 

correlatio

n 

Geographic

al 

correlation 

Technologic

al 

correlation 

Yield  NASS 
database 

1 3 1 1 1 

Seed van Paassen 
et al. (2019) 

1 3 3 1 1 

Inoculant 
Bamber et al. 
2020a 

4 4 1 3 2 

Lime van Paassen 
et al. (2019) 

2 3 3 1 1 

All fertilizer 
inputs 

van Paassen 
et al. (2019) 

1 3 2 1 3 

Manure 
inputs 

van Paassen 
et al. (2019), 
based on 
nutrient 
contents 
from 
Government 
of 
Saskatchewa
n (2022) and 
Azeez and 
Van 
Averbeke 
(2010) 

4 4 5 5 4 

All pesticides van Paassen 
et al. (2019) 

1 3 2 1 4 

Irrigation 
energy 

van Paassen 
et al. (2019) 

2 3 2 1 1 

Field 
activities 
energy use 

van Paassen 
et al. (2019) 2 3 2 1 1 

Transportatio
n 

van Paassen 
et al. (2019) 

2 3 4 1 1 

Post harvest Bamber et al. 
2020a 

1 3 1 3 1 

N2O 
emissions 
(direct and 
indirect) 

Modelled 
with data 
from 
Bandekar et 
al. (Bandekar 
et al., 2022) 

1 3 2 1 1 
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CO2 
emissions 
from lime and 
urea 

Modelled 
with data 
from van 
Paassen et al. 
(2019) 

2 3 3 2 1 

Soil carbon 
changes 

NIR Methods 
(U.S. 
Environment
al Protection 
Agency, 
2022) 1 1 1 1 4 

N credit Barker (2007) 2 3 5 3 4 

  

2.5.7 Background data providers 

The ecoinvent database version 3.8 was chosen for all background data providers. A single 

background data source was chosen to ensure methodological consistency for all background data. The 

ecoinvent database was chosen since it contains background datasets for all relevant data categories at 

the appropriate levels of regional specificity (country-level as well as for the province of Saskatchewan). 

It is also one of the most commonly used background database for LCA practitioners. Table 29 lists all 

providers used to model background datasets, as well as any modifications made to make them better 

fit for the purposes of this study. Table 30 lists all processes used in modifications. These tables were 

split in order to avoid redundancy, as electricity providers were changed across many of the background 

processes listed in table 29. In general, processes were modified to use electricity providers specific to 

the country or province modelled, unless otherwise indicated in the table. In some cases, production 

processes representing specific pesticide active ingredients are unavailable in ecoinvent v.3.8. Where 

possible, active ingredients have been modeled as production of active ingredients of the same chemical 

family. When these were not available, pesticides were modeled as unspecified.  
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Table 29. LCI flows, the processes used to model them from ecoinvent v.3.8, and any modifications made to those processes. 

Data point Process (from ecoinvent v.3.8) Modifications 

Seed 

Pea seed pea seed production, for sowing 
| pea seed, for sowing | APOS, 
U - CH 

electricity and pea providers changed for each region  

Wheat seed wheat seed production, for 
sowing | wheat seed, for 
sowing - RoW 

electricity and wheat providers changed for each region  

Canola seed rape seed production, for 
sowing | rape seed, for sowing - 
CH 

electricity and rapeseed providers changed for each region 

Fertilizers (including manure modelled as upstream synthetic fertilizer production) 

Urea urea production | urea | APOS, 
U – RER or RNA 

electricity providers changed for each region 
for CA, the national average electricity mix was used since urea is produced in many 
Canadian provinces (Cheminfo Services Inc., 2016) 
 

Ammonia ammonia production, steam 
reforming, liquid | ammonia, 
anhydrous, liquid | APOS, U – 
RER or RNA 

electricity and natural gas providers changed for each region 
 

Ammonium nitrate ammonium nitrate production | 
ammonium nitrate | APOS, U – 
RER or RNA 

electricity providers changed for each region 
for CA, the national average electricity mix was used since ammonium nitrate is 
produced in many Canadian provinces (Cheminfo Services Inc., 2016) 
ammonia providers changed to regionalized ammonia providers (modifications 
described above) 

Calcium 
ammonium nitrate 

calcium ammonium nitrate 
production | calcium 
ammonium nitrate – RNA or 
RER 

electricity providers changed for each region 
for CA, the national average electricity mix was used since ammonium nitrate is 
produced in many Canadian provinces (Cheminfo Services Inc., 2016) 
ammonia providers changed to regionalized ammonia providers (modifications 
described above) 
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Urea ammonium 
nitrate (UAN) 

urea ammonium nitrate 
production | urea ammonium 
nitrate mix | APOS, U – RNA or 
RER 

ammonium nitrate provider changed to regionally modified ammonium nitrate 
process for each region (described above) 
electricity providers changed for each region 
for CA, the national average electricity mix was used since urea ammonium nitrate is 
produced in many Canadian provinces (Cheminfo Services Inc., 2016) 

Monoammonium 
phosphate (MAP) 

market for monoammonium 
phosphate | monoammonium 
phosphate | APOS, U – RNA or 
RER 

electricity providers changed for each region 
for CA and SK, process was modelled as taking place in AB since that is the only 
location of a production facility for MAP (Cheminfo Services Inc., 2016) 

Diammonium 
phosphate (DAP) 

diammonium phosphate 
production | diammonium 
phosphate | APOS, U – RNA or 
RER 

electricity providers changed for each region 
ammonia providers changed to regionalized ammonia providers (modifications 
described above) 
for CA and SK, process was modelled as taking place in AB since that is the only 
location of a production facility for MAP (Cheminfo Services Inc., 2016), and no 
information was provided for production locations for DAP 

Single 
superphosphate 

single superphosphate 
production | single 
superphosphate | APOS, U - 
RER 

electricity and phosphate rock providers changed for each region 
for CA and SK, process was modelled as taking place in AB since that is the only 
location of a production facility for MAP (Cheminfo Services Inc., 2016), and no 
information was provided for production locations for superphosphate 

Triple 
superphosphate 

triple superphosphate 
production | triple 
superphosphate | APOS, U - 
RER 

electricity, phosphate rock, and phosphoric acid providers changed for each region 
for CA and SK, process was modelled as taking place in AB since that is the only 
location of a production facility for MAP (Cheminfo Services Inc., 2016), and no 
information was provided for production locations for superphosphate 

Phosphate rock phosphate rock beneficiation | 
phosphate rock, beneficiated | 
APOS, U - RER 

electricity providers changed for each region 

Potassium chloride 
(potash) – SK, CA, 
US 

potassium mining and 
benefication | potassium 
chloride | APOS, U - CA-SK 

electricity providers changed for each region 
for CA, process was modelled as SK since that is the only location for a production 
facility of potash, and SK was modelled as SK (Cheminfo Services Inc., 2016) 

Potassium chloride 
(potash) – FR, DE, 
AU 

potassium chloride production | 
potassium chloride | APOS, U 

electricity providers changed for each region 
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Potassium sulfate potassium sulfate production | 
potassium sulfate | APOS, U - 
RER 

electricity providers changed for each region 
for CA, process was modelled as SK since that is the only location for a production 
facility of potassium, and SK was modelled as SK (Cheminfo Services Inc., 2016) 
potassium chloride providers changed for each region (SK for both SK and CA) 

Ammonium sulfate ammonium sulfate production | 
ammonium sulfate | APOS, U - 
RER 

ammonia providers changed to regionalized ammonia providers (modifications 
described above) 
electricity providers changed for each region 
for CA, the national average electricity mix was used since ammonium sulfate is 
produced in several Canadian provinces (Cheminfo Services Inc., 2016) 

Sulfur natural gas production | sulfur | 
APOS, U - CA-AB or DE 

electricity providers changed for each region 
for CA and SK, the AB electricity mix was used since sulfur is mainly produced in AB 
(Prud’homme, 2013) 

Zinc primary zinc production from 
concentrate | zinc | APOS, U – 
CA-QC 

electricity and urea providers changed for each region 
for CA, the national average electricity mix was used since zinc is produced in several 
Canadian provinces, for SK the MB electricity mix was used since SK does not 
produce zinc and MB is the largest producer (World Atlas, 2022) 

Magnesium magnesium production, 
electrolysis | magnesium | 
APOS, U - IL 

electricity provider changed to market group for electricity, high voltage | electricity, 
high voltage | APOS, U - CA 

Lime lime production, milled, loose | 
lime | APOS, U – CA-QC or CH 

electricity providers changed for each region 
for CA, the national average electricity mix was used since lime is produced in several 
Canadian provinces, and SK used for SK (Vagt, 2015) 

Plant protection products 

Glyphosate glyphosate production | 
glyphosate | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia and decarbonised water providers changed for each region 

Pyroxasulfone, 
Metolachlor 

acetamide-anillide-compound 
production, unspecified | 
acetamide-anillide-compound, 
unspecified | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia, sulfur and decarbonised water providers changed for each region 

Sulfentrazone, 
propiconazole, 
prothioconazole, 

triazine-compound production, 
unspecified | triazine-

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
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epoxiconazole, 
tebuconazole, 
metconazole, 
Tetraconazole, 
Carfentrazon-ethyl, 
metribuzin 

compound, unspecified | APOS, 
U - RER 

ammonia and decarbonised water providers changed for each region 

Glufosinate, 
chlorpyrifos, 
Methidathion 

organophosphorus-compound 
production, unspecified | 
organophosphorus-compound, 
unspecified | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia, decarbonised water and sulfur providers changed for each region 

MCPA, 2,4-D, 
Quizalofop-ethyl 

phenoxy-compound production 
| phenoxy-compound | APOS, U 
- RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia and decarbonised water providers changed for each region 

Bromoxynil, 
Azoxystrobin, 
Dimoxystrobin, 
chlorothalonil, 
ethaboxam 

nitrile-compound production | 
nitrile-compound | APOS, U - 
RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia and decarbonised water providers changed for each region 

Bentazon benzo[thia]diazole-compound 
production | 
benzo[thia]diazole-compound | 
APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia, sulfur and decarbonised water providers changed for each region 

Fluroxypyr, 
Diflufenican, 
Boscalid 

pyridine-compound production 
| pyridine-compound | APOS, U 
- RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia and decarbonised water providers changed for each region 

Triallate [thio]carbamate-compound 
production | [thio]carbamate-
compound | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia, sulfur and decarbonised water providers changed for each region 

Diquat bipyridylium-compound 
production | bipyridylium-
compound | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
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ammonia, sulfur and decarbonised water providers changed for each region 

Ethalfluralin, 
Trifluralin, 
Pendimethalin 

dinitroaniline-compound 
production | dinitroaniline-
compound | APOS, U - RER 

electricity and ammonia providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 

Deltamethrin, 
cyhalothrin-
lambda, Bifenthrin, 
Alpha-
cypermethrin, 
Cypermethrin, 
Etofenprox, Beta-
Cyfluthrin, 
Permethrin 

pyrethroid-compound 
production | pyrethroid-
compound | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia and decarbonised water providers changed for each region 

Atrazine atrazine production | atrazine | 
APOS, U - RER 

electricity and ammonia providers changed for each region 

Dimethanamid-P dimethenamide production | 
dimethenamide | APOS, U - RER 

electricity, ammonia, sulfur and decarbonised water providers changed for each 
region 

Napropamide napropamide production | 
napropamide | APOS, U - RER 

electricity, sulfur, and decarbonised water providers changed for each region 

cyclic N-compound cyclic N-compound production | 
cyclic N-compound | APOS, U - 
RER 

electricity, ammonia, sulfur, and decarbonised water providers changed for each 
region 

Metrafenone, 
dicamba, 
Propoxycarbazone, 
fludioxonil 

benzoic-compound production 
| benzoic-compound | APOS, U 
- RER 

electricity, ammonia, sulfur, and decarbonised water providers changed for each 
region 

Flumioxazin phthalimide-compound 
production | phthalimide-
compound | APOS, U - RER 

electricity, ammonia, urea and decarbonised water providers changed for each 
region 

Thiram 
 

dithiocarbamate-compound 
production | dithiocarbamate-
compound | APOS, U - RER 

ammonia and electricity providers changed for each region 
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Benzimidazole 
compound 

benzimidazole-compound 
production | benzimidazole-
compound | APOS, U - RER 

ammonia, electricity, and sulfur providers changed for each region 

All other active 
ingredients 

pesticide production, 
unspecified | pesticide, 
unspecified | APOS, U - RER 

electricity providers changed for each region 
US national electricity grids were used for US, CA and SK since the majority of 
pesticides used in Canada are sourced from the US (Bamber et al., 2022a) 
ammonia, urea, sulfur and decarbonised water providers changed for each region 

Inoculant  

Peat moss peat moss production, 
horticultural use | peat moss | 
APOS, U – CA-QC 

ammonium nitrate and electricity providers changed for each region 

Energy providers 

Diesel diesel, burned in agricultural 
machinery | diesel, burned in 
agricultural machinery | APOS, 
U - GLO 

infrastructure and machinery flows removed 

Electricity market for electricity, low 
voltage | electricity, low voltage 
| APOS, U (for each region) 

processes for each region used without modifications 

Light fuel oil heat production, light fuel oil, at 
boiler 10kW condensing, non-
modulating | heat, central or 
small-scale, other than natural 
gas | APOS, U – Europe without 
Switzerland 

electricity providers changed for each region 

Natural gas (heat) heat production, natural gas, at 
boiler condensing modulating 
>100kW | heat, district or 
industrial, natural gas | APOS, U 
– CA-QC or Europe without 
Switzerland 

electricity and natural gas providers changed for each region 

Process steam 
from natural gas 
(electricity) 

electricity production, natural 
gas, combined cycle power 

processes for each region used without modifications 
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plant | electricity, high voltage | 
APOS, U – for each country 

Transportation 

Truck 
transportation 

market for transport, freight, 
lorry 7.5-16 metric ton, EURO4 
| transport, freight, lorry 7.5-16 
metric ton, EURO4 | APOS, U - 
RER 

 

N credit 

Ammonia (used as 
a negative input to 
credit the 
decreased use of N 
fertilizer for next 
crop in rotation 
due to N fixation by 
peas) 

ammonia production, steam 
reforming, liquid | ammonia, 
anhydrous, liquid | APOS, U  

regional modifications as described above 

 

Table 30. Processes used for modification of background processes 

Modifications Processes used for modifications 

Electricity - market for electricity, low voltage | electricity, low voltage | APOS, U – Saskatchewan,  
- market group for electricity, low voltage | electricity, low voltage | APOS, U – Canada,  
- market for electricity, low voltage | electricity, low voltage | APOS, U – France 
- market for electricity, low voltage | electricity, low voltage | APOS, U – Germany 
- market group for electricity, low voltage | electricity, low voltage | APOS, U – United States 

Pea seed - pea seed production, for sowing | pea seed, for sowing | APOS, U  | - Saskatchewan 
- pea seed production, for sowing | pea seed, for sowing | APOS, U | - Canada 
- pea seed production, for sowing | pea seed, for sowing | APOS, U | - France 
- pea seed production, for sowing | pea seed, for sowing | APOS, U | - Germany 
- pea seed production, for sowing | pea seed, for sowing | APOS, U | - United States 

Wheat seed - wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - Australia 
- wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - Canada 
- wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - Saskatchewan 
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- wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - Germany 
- wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - France 
- wheat seed production, for sowing | wheat seed, for sowing | APOS, U | - United States 

 

Canola seed - rape seed production, for sowing | rape seed, for sowing | APOS, U | - Australia 
- rape seed production, for sowing | rape seed, for sowing | APOS, U | - Canada 
- rape seed production, for sowing | rape seed, for sowing | APOS, U | - Saskatchewan 
- rape seed production, for sowing | rape seed, for sowing | APOS, U | - France 
- rape seed production, for sowing | rape seed, for sowing | APOS, U | - Germany 

Natural gas - market group for natural gas, high pressure | natural gas, high pressure | APOS, U – Canada 
- market for natural gas, high pressure | natural gas, high pressure | APOS, U – United States 
- market for natural gas, high pressure | natural gas, high pressure | APOS, U – Germany 
- market for natural gas, high pressure | natural gas, high pressure | APOS, U – Australia 
- market for natural gas, high pressure | natural gas, high pressure | APOS, U – Alberta 

Phosphate 
rock 

- market for phosphate rock, beneficiated | phosphate rock, beneficiated | APOS, U – Europe 
- market for phosphate rock, beneficiated | phosphate rock, beneficiated | APOS, U – United States 
- phosphate rock beneficiation | phosphate rock, beneficiated | APOS, U | - Australia 
- phosphate rock beneficiation | phosphate rock, beneficiated | APOS, U | - France 

Phosphoric 
acid 

- phosphoric acid production, dihydrate process | phosphoric acid, fertiliser grade, without water, in 70% solution 
state | APOS, U – United States 

- phosphoric acid production, dihydrate process | phosphoric acid, fertiliser grade, without water, in 70% solution 
state | APOS, U – Rest of World 

- phosphoric acid production, dihydrate process | phosphoric acid, fertiliser grade, without water, in 70% solution 
state | APOS, U - Europe 

Potassium 
chloride 

- potassium mining and benefication | potassium chloride | APOS, U | - Australia 
- potassium mining and benefication | potassium chloride | APOS, U – Saskatchewan 
- potassium chloride production | potassium chloride | APOS, U  | - Germany 
- potassium chloride production | potassium chloride | APOS, U | - France 
- potassium mining and benefication | potassium chloride | APOS, U | - United states 

Urea - Urea production | urea | APOS, U | - Canada 

Ammonia - ammonia production, steam reforming, liquid | ammonia, anhydrous, liquid | APOS, U | - Australia 
- ammonia production, steam reforming, liquid | ammonia, anhydrous, liquid | APOS, U | - United States 
- ammonia production, steam reforming, liquid | ammonia, anhydrous, liquid | APOS, U | - Germany 
- ammonia production, steam reforming, liquid | ammonia, anhydrous, liquid | APOS, U | - France 
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Decarbonised 
water 

- market for water, decarbonised | water, decarbonised | APOS, U – Rest of World 
- market for water, decarbonised | water, decarbonised | APOS, U – United States 
- market for water, decarbonised | water, decarbonised | APOS, U – Germany 
- market for water, decarbonised | water, decarbonised | APOS, U - France 

Sulfur - market for sulfur dioxide, liquid | sulfur dioxide, liquid | APOS, U  - Europe 
- natural gas production | sulfur | APOS, U – United States 
- natural gas production | sulfur | APOS, U | - Germany 
- natural gas production | sulfur | APOS, U | - France 

Ammonium 
nitrate 

- ammonium nitrate production | ammonium nitrate | APOS, U | - Saskatchewan 
- ammonium nitrate production | ammonium nitrate | APOS, U | - Canada 
- ammonium nitrate production | ammonium nitrate | APOS, U | - Germany 
- ammonium nitrate production | ammonium nitrate | APOS, U | - France 
- ammonium nitrate production | ammonium nitrate | APOS, U | - United States 
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2.5.8 Emissions modelling 

2.5.8.1 Soil carbon change 

The estimates of soil carbon change from each country’s NIR were used. These values were 
calculated by dividing the total soil carbon change for each country’s cropland by the total area of 
cropland in each country. These area-based estimates were then scaled by the yield of each crop in each 

country to give carbon sequestration or emission estimates per functional unit of 1 kg of crop. Apart 

from the differences in yield, these values are not crop specific, since the NIR reports these values for all 

crops. These values were used to ensure methodological consistency between countries, since detailed 

data were not available for all countries to perform process-based modelling at a crop-specific level. For 

estimates of carbon sequestration, these were calculated as inputs of CO2 to the soil from the 

atmosphere, and carbon losses were modelled as emissions of CO2 to the atmosphere from the soil. 

2.5.8.2 N2O emissions 

In order to ensure methodological consistency for all crop-country combinations, the modelling 

practices employed in each country’s NIR were used, with all deviations documented. Direct N2O 

emissions were calculated in accordance with the IPCC (2019) equation 11.2 such that 𝑁2𝑂𝑑𝑖𝑟𝑒𝑐𝑡 − 𝑁 = ∑ (𝐹𝑆𝑁 + 𝐹𝑂𝑁)𝑖 × 𝐸𝐹1𝑖 + (𝐹𝐶𝑅 + 𝐹𝑆𝑂𝑀) × 𝐸𝐹1 + 𝑁2𝑂 − 𝑁𝑂𝑆 + 𝑁2𝑂 − 𝑁𝑃𝑅𝑃𝑖  

where   𝑁2𝑂𝑑𝑖𝑟𝑒𝑐𝑡 − 𝑁 represents the annual direct N2O–N emissions produced from managed soils in kg N2O–N 

year-1  

FSN represents the amount of synthetic fertilizer N applied to soils in kg N year-1 

FON represents the annual amount of animal manure, compost, sewage sludge, and other organic N 

additions applied to soils in kg N year-1 

EF1i represents emissions factors developed for N2O emissions from synthetic fertilizers, organic N 

application, N inputs from crop residues, and mineralization of N due to losses of soil organic matter in 

kg N2O-N (kg N input)-1 

FCR represents the annual amount of N in above and belowground crop residues, including N-fixing 

crops, and from forage/pasture renewal, returned to soils in kg N year-1 

FSOM represents the annual amount of N in mineral soils that is mineralised, in association with loss of 

soil C from soil organic matter as a result of changes to land use or management, in kg N year-1 

For Canada and Saskatchewan, the N2O emissions estimated in the CRSC carbon footprint 

methodology report were used ((S&T)2 Consultants Inc., 2021a), since they are based on the Canadian 

NIR, calculated at a sub-regional level, then aggregated to the provincial and national scale. This includes 

the contribution to N2O emissions from decomposition of crop residues left on the field which were 

scaled down in accordance with the percentage of crop residues assumed to be removed in wheat 

production systems from those values presented which assumed no removal of crop residues from 
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wheat production systems. The Canadian and Saskatchewan emission factors presented in Table 31 are 

production weighted averages of the Reconciliation Unit (RU) factors presented in the CRSC reports. 

Since the production volumes in each RU differ by crop, the emission factors also differ due to the 

differences in production weighted averages. They used the same emission factors for all types of N 

fertilizer applied. The values for the direct N2O emission factors for Australia, France and Germany were 

taken from each country’s NIR (Cetipa, 2022; Commonwealth of Australia, 2022; Federal Environment 

Agency, 2022). The French NIR uses the IPCC Tier 1 value, whereas the Australian and German NIRs 

present country-specific Tier 2 values. For the United States, the NIR uses a combination of Tier 1 and 

Tier 3 values, with the Tier 3 values calculated using the process-based model DAYCENT(Del Grosso et 

al., 2001). However, they do not present crop-specific Tier 3 results for N2O emissions, and the data are 

not available to use process-based models to calculate these emissions for the U.S., or other countries. 

Therefore, the Tier 2 EF was taken from Dusenbury et al., (2008), which was used in the LCA of US peas 

in rotation with wheat (Bandekar et al., 2022). This EF is representative of the Northern Great Plains 

region of US cropland. 

Indirect N2O emissions come from both volatilization (or gasification) of applied N as NH3 and NOx, 

and leaching as NO3, followed by subsequent emissions of N2O from each of these N compounds. 

Indirect N2O emissions from volatilization or gasification were calculated according to equation 11.11 

from IPCC (2019), such that  

𝑁2𝑂(𝐴𝑇𝐷) − 𝑁 = {∑(𝐹𝑆𝑁𝑖 × 𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝐹𝑖) + [(𝐹𝑂𝑁 + 𝐹𝑃𝑅𝑃) × 𝐹𝑟𝑎𝑐𝐺𝐴𝑆𝑀]𝑖 } × 𝐸𝐹4 

Where 

N2O(ATD) – N represents the annual amount of N2O – N produced from atmospheric deposition of N 

volatilised from managed soils in kg N2O–N yearr-1 

FSN represents the annual amount of synthetic fertilizer N applied to soils in kg N year-1 

FracGASF represents the fraction of synthetic fertilizer N that volatilises as NH3 and NOx in kg N volatilised 

(kg of N applied)-1 

FON represents the annual amount of managed animal manure, compost, sewage sludge and other 

organic N additions applied to soils in kg N year-1 

FracGASM represents the fraction of applied organic N fertilizer materials (FON) that volatilises as NH3 and 

NOx,  in kg N volatilised (kg of N applied or deposited)-1 with values taken from table 11.3 in IPCC (2019) 

EF4 represents emission factor for N2O emissions from atmospheric deposition of N on soils and water 

surfaces, in [kg N–N2O (kg NH3–N + NOx–N volatilised)-1] with values taken from table 11.3 in IPCC (2019) 

 Indirect emissions of N2O from N leaching and runoff were calculated according to equation 

11.10 from IPCC (2019) for regions where leaching/runoff occurs such that  𝑁2𝑂(𝐿) − 𝑁 = (𝐹𝑆𝑁 + 𝐹𝑂𝑁 + 𝐹𝑃𝑅𝑃 + 𝐹𝐶𝑅 + 𝐹𝑆𝑂𝑀) × 𝐹𝑟𝑎𝑐𝐿𝑒𝑎𝑐ℎ−(𝐻) × 𝐸𝐹5 

where 
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N2O(L)–N represents the annual amount of N2O–N produced from leaching and runoff of N additions to 

managed soils in regions where leaching/runoff occurs, in kg N2O–N year-1  

FSN represents the annual amount of synthetic fertilizer N applied to soils in regions where 

leaching/runoff occurs, in kg N year-1  

FON represents the annual amount of managed animal manure, compost, sewage sludge and other 

organic N additions applied to soils in regions where leaching/runoff occurs, in kg N year-1  

FCR represents the amount of N in crop residues (above- and below-ground), including N-fixing crops, 

and from forage/pasture renewal, returned to soils annually in regions where leaching/runoff occurs, in 

kg N year-1  

FSOM represents the annual amount of N mineralised in mineral soils associated with loss of soil C from 

soil organic matter as a result of changes to land use or management in regions where leaching/runoff 

occurs, in kg N year-1 calculated according to equation 11.8 in IPCC (2019) 

FracLeach represents the fraction of all N added to/mineralised in managed soils in regions where 

leaching/runoff occurs that is lost through leaching and runoff, in kg N (kg of N additions)-1 with values 

taken from table 11.3 in IPCC (2019) 

EF5 represents the emission factor for N2O emissions from N leaching and runoff, in kg N2O–N (kg N 

leached and runoff)-1 with values taken from table 11.3 in IPCC (2019) 

For Canada, as per the CRSC methodology report ((S&T)2 Consultants Inc., 2021a), the IPCC Tier 1 

methodology was followed for indirect N2O emissions from volatilization. Regionalized Tier 2 values for 

FracLEACH were taken from the CRSC methodology report ((S&T)2 Consultants Inc., 2021a), and 

aggregated to Saskatchewan and national level averages based on the relative proportions of 

production for each crop in each region. The Tier 1 value for EF5 was used. For Australia, France, 

Germany and the United States, the values for FracGAS, FracLEACH, EF4 and EF5 were taken from each 

country’s NIR (Cetipa, 2022; Commonwealth of Australia, 2022; Federal Environment Agency, 2022). 

Due to the climate conditions in Australia, no volatilization was included, and leaching was only included 

in regions where the climate conditions allowed it (100% of irrigated land and 20% on non-irrigated 

land) (Commonwealth of Australia, 2022). For Germany, the FracGASF values from the NIR are both 

country-specific, and fertilizer type-specific. Therefore, the overall fractions for each crop were 

calculated based on the proportions of each type of fertilizer applied. The German FracGASM values from 

the NIR were manure type and application method-specific. Crop-specific data were not available for the 

methods of manure application, therefore the generic values were used.
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Table 31. Emission factors and fractions used in N2O emissions modelling for all crops and regions. 

Region EF1FSN 

Irrigated 

croplanda 

EF1FSN 

Non-

irrigated 

croplanda 

EF1FON 

Dairy, 

feedlot, 

poultry 

EF1FON 

pigs 

EF1FCR EF1FSOM FracGASF 

CAN 

FracGASF 

ammonium 

solutionsb 

FracGASF 

ureab 

FracGASF 

ammonium 

phosphatesb 

FracGASF 

NK and 

NPK 

fertilizersb 

FracGASF 

straight 

fertilizers/ 

single 

nutrient 

fertilizersb 

FracGASM EF4 FracLEACH 
 

EF5 

Canada (peas) 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1597 0.011 

Canada 
(wheat) 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1748 0.011 

Canada 
(canola) 0.0077 0.0077 0.0077 0.0077 0.0077 0.0077 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1649 0.011 

Saskatchewan 
(peas) 0.0072 0.0072 0.0072 0.0072 0.0072 0.0072 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1603 0.011 

Saskatchewan 
(wheat) 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1632 0.011 

Saskatchewan 
(canola) 0.0074 0.0074 0.0074 0.0074 0.0074 0.0074 0.10 0.10 0.10 0.10 0.10 0.10 0.20 0.01 0.1636 0.011 

Australia 0.0085 0.002 0.01 0.0039 0.001 0.002 - - - - - - - - 0.24 0.011 

France 0.01 0.01 0.01 0.01 0.01 0.01 0.06 0.06 0.06 0.06 0.06 0.06 0.147 0.01 0.25 0.0075 

Germany 0.0062 0.0062 0.0062 0.0062 0.0062 0.01 0.0066 0.081 0.038 0.041 0.041 0.008 0.21 0.01 0.3 0.0075 

United States 0.0021 0.0021 0.0021 0.0021 0.0021 0.0021 0.11 0.11 0.11 0.11 0.11 0.11 0.21 0.01 0.24 0.011 
a The distinction between irrigated and non-irrigated cropland is only made for Australia 
b The distinction between fertilizer types is only made for Germany 
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The input values for synthetic fertilizer and manure came from the inventory values, as described in 

section 2.5.6. The FSOM values were calculated using the estimates of soil carbon change, as described in 

section 2.5.8.1. For any countries that had net carbon losses from the soil (rather than sequestration), 

these carbon losses were used to calculate the losses of N based on the N:C ratio of 0.1 (Cetipa, 2022; 

Commonwealth of Australia, 2022; Environment and Climate Change Canada, 2022; Federal 

Environment Agency, 2022). Inputs of N from crop residue were calculated for each crop-country 

combination, as described below in section 2.5.8.3. 

2.5.8.3 N inputs from crop residues  

Retention of crop residues on agricultural fields after crop harvesting may impart a large number of 

benefits to agricultural soils. Potential benefits include limiting soil water evaporation, reducing risks soil 

erosion by wind and water, and increases in soil carbon stocks and sequestration (Ranaivoson et al., 

2017). These benefits may be offset, however, by increased emissions of N2O resulting from microbial N 

mineralization and nitrification of residues, the rate of which is dependent on the N content of crop 

residues (Abalos et al., 2022; Chen et al., 2013). Accurate modeling of N2O emissions therefore requires 

information related to crop residue yields and associated management practices, such as their removal 

from fields, as well as the N content of these residues. Specific assumptions made about crop residue-

related management practices, yields, and N contents for each crop-country combination are detailed 

below.  

2.5.8.3.1. Canola 

Retention of canola crop residues on fields has been demonstrated to have suppressive effects on 

weeds (Haramoto and Gallandt, 2004; Radicetti et al., 2013), and positive impacts on nutrient uptake in 

proceeding crops (Arcand et al., 2014; Hirzel et al., 2022) without negatively impacting establishment, 

growth, or yields (Robertson et al., 2009). Canola residues were assumed to be left on the field for all 

countries in this analysis. Leaving residues on the field was previously identified as a best practice for 

canola in western Canada (MacWilliam et al., 2014), and is in line with work performed for the CRSC 

((S&T)2 Consultants Inc, 2021a). In Australia, retention of canola residues on fields is in line with the 

most common practice for broad-acre crops (Umbers and Watson, 2021), and previous carbon footprint 

assessments of Australian canola (Eady, 2017). In France, it has been argued that canola crop residues 

are not being utilized to their maximum potential in the energy sector due to the lack of a mature 

market for these residues throughout the European Union (Iqbal et al., 2016; Karan and Hamelin, 2021). 

Finally, in Germany it is common practice to leave canola residues on the fields (Rothardt et al., 2021; 

Vinzent et al., 2017; Wang et al., 2020).    

Following harvesting, total crop residues include both an above and belowground component, each 

occurring in different proportions and each with potentially different contributions to crop residue N2O 

emissions due to differences in decomposition and N mineralization (Arcand et al., 2014). For the 

Saskatchewan and Canadian canola production models, above and belowground residue yields and N 

contents are taken from Thiagarajan et al. (2018), the current best available estimates of these data. Use 

of these values is in line with work done for the CRSC ((S&T)2 Consultants Inc, 2021a), and the Canadian 

National Inventory Report (Environment and Climate Change Canada, 2022).  

For Australian canola production, yields, dry matter contents, and N contents are taken from the 

Australian NIR for oilseeds (Government of Australia, 2022), in line with previous work done by Eady 
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(2017). For French canola production, amounts of above and belowground residues were calculated 

based on values reported in the French NIR (Cetipa, 2022) assuming a dry matter content of 91%, in line 

with Terres Inovia (2020). N content of aboveground French canola residues was subsequently taken 

from Arvalis (2020a), while N content of belowground residues was taken from the French NIR (Cetipa, 

2022). Yields and N contents of above and belowground residues in German canola production systems 

were calculated based on Vos et al. (2022), in line with the German NIR (Federal Environment Agency, 

2022). A complete breakdown of assumed above and belowground crop residue yields and N contents 

for canola is presented in table 32.  

Table 322. Assumed values for canola crop residue yields and N contents used in calculation of N2O 
emissions from crop residues 

 Aboveground 
crop residues (kg 
dry matter/kg 
yield) 

Belowground crop 
residues (kg dry 
matter/kg yield) 

Aboveground 
residues N 
content (kg/kg 
residue) 

Belowground 
residues N 
content (kg/kg 
residue) 

Saskatchewan 2.651 1.351 0.0132 0.0092 

Canada 2.651 1.351 0.0132 0.0092 

Australia 2.003 0.643 0.0093 0.0103 

France 2.464 0.744 0.0075 0.0096 

Germany 1.517 0.467 0.0087 0.0107 

1 Values taken from (Thiagarajan et al. (2018)  
2 Thiagarajan et al. (2018) 
3 Australian NIR (Government of Australia, 2022), table 5.I.1 
4 Calculated based on French NIR (Cetipa, 2022), assuming a dry matter content of 91% in line with 

Terres Inovia (2020) 
5 Arvalis (2020a) 
6French NIR (Cetipa, 2022), table 274 
7 Calculated based on Vos et al. (2022) 

2.5.8.3.2. Wheat 

Retention of wheat residues on field and subsequent incorporation into agricultural soils may have 

beneficial effects on yields (Esther et al., 2014; Sui et al., 2015), soil nutrient dynamics and nutrient use 

efficiencies (Coelho et al., 2016; Hoang and Marschner, 2019; Sui et al., 2015), and soil microbiota (Chen 

et al., 2021; Esther et al., 2014). Incorporation of straw may also provide protective effects from wind- 

and water-induced soil erosion (Nelson, 2002; Yang et al., 2020), while providing farmers with an 

alternative management practice to burning of residues (Liu et al., 2021). Harvesting of straw residues, 

however, may be economically beneficial for farmers given the myriad potential uses of wheat straw, 

such as a feedstock for production of second generation biofuels (Hasanly et al., 2018; Suardi et al., 

2020), bedding in livestock systems (Smerchek and Smith, 2020; Yesufu et al., 2020), and others (Saad 

Azzem and Bellel, 2022; Xie et al., 2012).   

Accurate emissions modeling for wheat production systems therefore requires estimation of above 

and belowground residues after harvesting, the proportion of above ground residues removed from the 

field in the form of wheat straw, and the N contents of belowground residues, and those aboveground 

residues that are not removed and are rather retained on the field. Specific proportions of wheat straw 
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removed from fields for each region have been previously described in section 2.5.5.2. For the 

Saskatchewan and Canadian wheat production models above and belowground residue yields and N 

contents are taken from Thiagarajan et al. (2018), the current best available estimates of these data. Use 

of these values is in line with work done for the CRSC ((S&T)2 Consultants Inc., 2021b), and the Canadian 

National Inventory Report (Environment and Climate Change Canada, 2022).    

Residue yields and N contents for the Australian production model were calculated based on values 

presented in the Australian NIR (Government of Australia, 2022). French residue yields and N content of 

below ground residues were calculated based on values presented in the French NIR (Cetipa, 2022) 

assuming a dry matter content of 87.2%, in line with Arvalis (2020b). N content of aboveground residues 

in the French production system was taken from values presented by Arvalis (2020a). Residue yields and 

N contents for the German production system were calculated based on Vos et al. (Vos et al., 2022), in 

line with methods used in the German NIR (Federal Environment Agency, 2022). Estimation of residue 

yields and N contents for the American production system was more difficult as the U.S. NIR calculates 

these values using the process-based DAYCENT model (Del Grosso et al., 2001), application of which is 

infeasible for the current study. Further, only a single U.S.-specific literature source could be identified 

from which these values may be derived (Kemanian et al., 2007) . However, this source only presents 

ranges for N contents of grain and above ground biomass without presenting data related to 

belowground biomass or harvest indices which would be required to calculate the required data 

(Kemanian et al., 2007). In the absence of U.S.-specific data, Canadian data from Thiagarajan et al. 

(2018) have been used in proxy (table 33).     

 

Table 333. Assumed values for wheat crop residue yields and N contents of above and belowground 
residues 

 Aboveground 
crop residues (kg 
dry matter/kg 
yield) 

Belowground crop 
residues (kg dry 
matter/kg yield) 

Aboveground 
residues N 
content (kg/kg 
residue) 

Belowground 
residues N 
content (kg/kg 
residue) 

Saskatchewan 1.491 0.581 0.0071 0.0151 

Canada 1.491 0.581 0.0071 0.0151 

Australia 1.322 0.382 0.0062 0.012 

France 0.973 0.463 0.00664 0.0113 

Germany 0.695 0.315 0.0065 0.0095 

United States 1.491 0.581 0.0071 0.0151 

1 Thiagarajan et al. (2018), assuming a dry matter content of 89.3% in line with CRSC report ((S&T)2 

Consultants Inc., 2021b) 

2 Calculated based on Australian NIR table 5.I.1 (Government of Australia, 2022) 

3 Calculated from French NIR (Cetipa, 2022) using an assumed dry matter content of 87.2% in line with 

Arvalis (2020b) 

4 Arvalis (2020a) pg 495 

5 Vos et al. (2022) – pg 388 
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2.5.8.3.3. Field peas        

Pulse crops, such as field peas, are often included in crop rotations due to their ability to fix N, 

thereby reducing requirements for synthetic fertilizers in subsequent crops (MacWilliam et al., 2014; 

Xing et al., 2017). Key to farmers recognising these benefits is the retention of crop residues on fields, as 

large amounts of N may be released during decomposition (Bahl and Pasricha, 2000; Walley et al., 

2007). Retention of residues on fields may also improve the biological properties of soils (Marschner et 

al., 2004), and soil carbon dynamics (Wang and Sainju, 2014). Given the important role that pea crop 

residues play in providing benefits to subsequent crops in rotation it is assumed here that all residues 

are retained for the purposes of calculating N inputs from crop residues.  

Yields of above and belowground residues, as well as N contents for the Saskatchewan and 

Canadian systems have been taken from Thiagarajan et al. (2018), the current best available estimates 

of these data. Use of these values is in line with work done for the CRSC ((S&T)2 Consultants Inc, 2021b), 

and the Canadian National Inventory Report (Environment and Climate Change Canada, 2022). These 

numbers assume field peas have a dry matter content of 89.3%, in line with the CRSC report ((S&T)2 

Consultants Inc, 2021b). French residue yields and N content of below ground residues were calculated 

based on values presented in the French NIR (Cetipa, 2022) assuming a dry matter content of 87.2%, in 

line with Arvalis (2020b). N content of aboveground residues in the French production system was taken 

from values presented by Arvalis (2020a). Residue yields and N contents for the German production 

system were calculated based on Vos et al. (2022), in line with methods used in the German NIR (Federal 

Environment Agency, 2022). As with estimates of yields and N contents of wheat residues, Canadian 

proxy data has been used for the U.S. production system in the absence of U.S.-specific data (table 34).     

Table 344. Assumed values for dry field pea crop residue yields and N contents of above and 
belowground residues 

 Aboveground 
crop residues (kg 
dry matter/kg 
yield) 

Belowground crop 
residues (kg dry 
matter/kg yield) 

Aboveground 
residues N 
content (kg/kg 
residue) 

Belowground 
residues N 
content (kg/kg 
residue) 

Saskatchewan 2.281 0.491 0.0211 0.0221 

Canada 2.281 0.491 0.0211 0.0221 

France 0.692 0.292 0.01353 0.0082 

Germany 0.694 0.314 0.0064 0.0094 

United States 2.281 0.491 0.0211 0.0221 

1 Thiagarajan et al. (2018), assuming a dry matter content of 89.3% in line with CRSC report ((S&T)2 

Consultants Inc, 2021b)  

2 Calculated from French NIR (Cetipa, 2022) 

3 Arvalis (2020a) pg 495 

4 Vos et al. (2022) – pg 388 

2.5.9 Impact assessment methods 

The carbon footprint of each crop-country model was calculated using the IPCC 2021 AR6 

methodology. (Cilleruelo, 2022). This method is based on the most recent Assessment Report (AR6) 



75 
 

released by the IPCC (IPCC, 2022), which reports all characterization factor values used in calculation of 

global warming impacts.  

2.5.10 Calculation of production weighted average global carbon footprints  

As a point of comparison, global, production weighted average carbon footprints were calculated for 

each crop to compare with the carbon footprint results from Saskatchewan cropping systems. Global 

production weighted averages were calculated by determining the proportion of total production 

represented by each country included in the analysis, as reported in table 2. These proportions were 

then multiplied by the calculated impact assessment results (both with and without soil carbon change), 

and the products summed. Importantly, calculation of these production weighted average carbon 

footprints did not include the impacts attributable to Saskatchewan cropping systems. They did, 

however, include the impacts attributable to Canadian production systems. These production weighted 

average values were generated for all three crops included in this analysis.    

2.5.11 Data quality and uncertainty assessment 

Data quality indicators were computed for each LCI data point based on the pedigree matrix scores 

assigned during the data quality assessment stage (reported in tables 13-28). These pedigree matrix 

scores were entered into openLCA for each flow. The openLCA software was used to calculate the total 

uncertainty (geometric standard deviation) associated with the data quality indicators, as described in 

section 2.4. In addition to data quality uncertainty, the other source of uncertainty that was accounted 

for was the parameter uncertainty, known as the base uncertainty in openLCA. This represents the 

stochastic uncertainty associated with the variability in the value for each data point, rather than the 

quality of the data (Bamber et al., 2019). These uncertainty values were sourced from Frischknecht et 

al., (2005), which provides generic base uncertainty factors specific to sector or type flow (Table 35). 

These generic factors were used since data were collected from various sources and it was not possible 

to consistently calculate the variability of the data values. The uncertainty of the impact assessment 

results was calculated using Monte Carlo simulation, which propagates the uncertainty in the inventory 

data to the results to determine the overall uncertainty of the model. The Monte Carlo simulation was 
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performed with a total of 1000 runs, which is the most common method of uncertainty propagation for 

agricultural LCAs (Bamber et al., 2019). 

2.5.12 Sensitivity analysis 

Sensitivity analyses were performed to determine the sensitivity of the final results to any 

methodological choices that were based on assumptions, and that made significant contributions to the 

overall carbon footprint results. These included the choice of data sources for LCI data when the data 

quality was similar between multiple sources, the choice of cut-off criteria and exclusions, allocation 

methods for manure and wheat straw, N2O emissions modelling, and impact assessment methods. Since 

sensitivity analyses are used to determine the impacts of methodological choices on results, amounts of 

uncertainty associated with sensitivity analysis results were not calculated.  

2.5.12.1 Cut-off criteria and exclusions 

Manure inputs were excluded from the canola and pea models for Saskatchewan and Canada, and 

the canola model for Australia, since the CRSC reports ((S&T)2 Consultants Inc, 2021b), Eady (2017), and 

Alcock et al. (2022) reported no manure inputs for these crop-region combinations. However, van 

Paassen et al. 2019 reported manure inputs for these regions. As a sensitivity analysis, the manure 

inputs reported in van Paassen et al. 2019 were used in the canola and pea models for Saskatchewan, 

Canada, and the canola model for Australia. Similarly, for Canadian and Saskatchewan canola, wheat, 

and peas, lime inputs were excluded since the CRSC reports ((S&T)2 Consultants Inc., 2021b,c,d) and 

Bamber et al. (2020a) excludes them. However, van Paassen et al. 2019 include lime inputs for Canada, 

Table 355. Basic uncertainty factors for the inherent stochasticity in combustion (c), process (p) and 
agricultural (a) processes, based on the sector of the activity. Source: Frischknecht et al. (2005). 
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therefore these were included in the model as a sensitivity analysis. Irrigation was also not included for 

German peas since van Paassen et al. 2019 did not include any inputs of energy use for irrigation, 

although Nemecek (2007) did indicate an input of irrigation, therefore this value was used as a 

sensitivity analysis. 

2.5.11.3 Manure nutrient contents 

To replace manure inputs in terms of upstream inputs of synthetic fertilizers as described in 

section 2.5.5.1, it was necessary to determine manure nutrient contents. Nutrient contents of manure 

are largely dependent on specific feed formulations and the amounts of nutrients consumed by the 

animal which may vary significantly across different regions. The assumed manure nutrient contents 

used here reflect this (table 9). To better understand the potential impacts of regional differences in 

estimates of manure nutrient contents on the final results, a sensitivity analysis was performed in which 

manure nutrient contents were assumed to be the same across all regions included in this analysis. 

Specifically, average values were calculated based on the assumed manure nutrient contents, and these 

values were applied to all systems that included manure inputs. The assumed manure nutrient contents 

used in this sensitivity analysis are presented in table 37 

Table 36. Assumed percent nutrient compositions applied to all manure inputs in all cropping systems 
for sensitivity analysis 

 Pig Poultry 

N 0.96 3.47 

P 0.97 1.69 

K 0.36 1.63 

 

2.5.11.4 Allocation methods 

Manure inputs were modelled as the original inputs of synthetic fertilizer (i.e. those that that 

provided the nutrients that were subsequently passed through the crops that were fed to the animals 

and eventually excreted in the manure used). This avoided the need for allocation between manure and 

other co-products of the animal production systems. However, the nutrients in the manure are recycled 

products since they were first used to produce the crops consumed by the livestock. Therefore, a 50:50 

allocation ratio was used to model the recycling of these products, as suggested by AFNOR (2011). For 

the sensitivity analysis, the 0:100 and 100:0 allocation ratios also suggested by AFNOR (2011) were used, 

meaning that either none or all of the impacts of the fertilizer production were allocated to the manure. 

Given the highly variable estimates of wheat straw removal rates observed in the literature, a 

sensitivity analysis was performed around the amount of straw assumed to be removed. First, a 

sensitivity analysis was designed in which it was assumed that 0% of straw was removed (i.e., all impacts 

allocation to wheat grain production), in line with assumption by ((S&T)2 Consultants Inc., 2021b). 

Second, analyses were performed taking into account the region-specific straw removal rates found in 

the literature. It was assumed that the identified rates applied to total crop residues throughout each 

specific region. These assumed straw removal rates were: 55% for Canada (Li et al., 2012b); 54% for 

Australia (Broster and Walsh, 2022); 50% for France (Lokesh et al., 2019) and the U.S. (Juneja et al., 

2013); and 67.5% for Germany, representing an average value from Weiser et al., (2014) and Brosowski 

et al., (2020). Finally, a sensitivity analysis was also performed in which it was assumed that 85% of 
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straw was removed in all regions, in line with the maximum possible removal rate suggested by any 

single source (Li et al. 2012). 

In addition, during consultation with stakeholders some concerns were raised regarding the 

accuracy of the reported reference year for the area of land from which crop residues were baled as 

reported by Statistics Canada (2021b). Specifically, it is reported that the information given is taken from 

the Canadian Census of Agriculture performed in 2021. In the relevant question on the Census of 

Agriculture (i.e., question 37), it is specified that information is being collected related to crop residue 

baling practices in the year 2020 (Statistics Canada, 2021c). However, the published data tables list 2021 

as the reference year for the information presented. Whether the published information reflects crop 

residue baling practices in 2021 or 2020 slightly changes the constant assumed rate at which crop 

residues are removed applied to all of the wheat models. For this reason, a sensitivity analysis was 

performed in which it was assumed that the reported data is representative of crop residue baling 

practices in 2020 instead of 2021. This number was then compared with the total area used for non-

durum wheat production in Saskatchewan in 2020 to estimate the percentage of non-durum wheat land 

from which crop residues were baled (i.e., 21.1% rather than 24.1%). This number was then used in 

combination with the 34.5% residue removal rate from Lafond et al. (2009) to calculate the total 

residues removed, applied to all wheat production models.         

2.5.11.5 N2O emissions modelling 

For each emission factor or fraction used in the N2O emission calculations, a sensitivity analysis was 

conducted to use instead the minimum and maximum values of the ranges given. These were obtained 

from the NIRs or IPCC reports that reported the uncertainty associated with each factor. The Australian 

NIR (Government of Australia, 2022) estimated an uncertainty range of +/-55.9% for the total estimate 

of N2O emissions from agricultural soils. This was not broken down to uncertainty estimates around 

each emission factor or fraction, therefore values of +55.9% and -55.9% of total N2O emissions were 

used as a sensitivity analysis. The French NIR (Cetipa, 2022) used the generic uncertainty factors from 

IPCC (2019), which are a range of 0.001-0.018 for EF1 for direct N2O emissions from fertilizer and 0.000-

0.014 for manure, and for indirect emissions a range of 0.002-0.018 for EF4 and 0.00 to 0.02 for EF5. For 

Germany, they also used the default uncertainty ranges for EF1 and EF5, and EF4 ranged from 0.002 to 

0.05 (Vos et al. 2022). The US NIR (United States Environmental Protection Agency, 2022) reported an 

uncertainty range of -27% to +26% for the total estimate of N2O emissions from agricultural soils. The 

Canadian NIR (Environment and Climate Change Canada, 2022) reported an uncertainty range of -36% to 

+52% for their estimate of total N2O emissions from agricultural soils. In addition to this uncertainty, 

there was a recent publication by Liang et al., (2020) that indicates that the region-specific N2O emission 

factors should be scaled by a factor of 0.28 when applied to crop residue N inputs, and by 0.84 for 

manure N inputs. This was not performed in the N2O estimates from the CRSC reports used for Canada 

((S&T)2 Consultants Inc., 2021a), therefore, this change was also included as part of the sensitivity 

analysis. 

2.5.11.6 Crop residue yields and N contents 

Large differences were observed in the above and below ground crop residue yields and N contents 

across the regions included in this analysis. Given the potentially important role that N from crop 

residues may play in determining field level nitrogenous emissions a sensitivity analysis was conducted 

to explore how these regional differences may be impacting results. Specifically, average values for 
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above and below ground residue yields and N contents were calculated for each crop, and these values 

were used in calculations of the N inputs from crop residues for each crop-region combination. Above 

and below ground residue yields and N contents used in this sensitivity analysis are presented in table 

37. Use of these alternative crop residues yields and N contents alters both the field level emissions due 

to differences in the N contribution made by crop residues to each system, and alters the allocation 

factors associated with removed crop residues in the wheat production systems. The wheat allocation 

factors used in this sensitivity analysis were calculated following the procedure outlined in section 

2.5.5.2, using an assumed constant straw removal rate, and proportion of land from which straw is 

removed, representative of Saskatchewan. 

Table 37. Crop residue yields and N contents used for sensitivity analysis. 

 Aboveground 
crop residues (kg 
dry matter/kg 
yield) 

Belowground crop 
residues (kg dry 
matter/kg yield) 

Aboveground 
residues N 
content (kg/kg 
residue) 

Belowground 
residues N 
content (kg/kg 
residue) 

Canola 2.25 0.91 0.01 0.009 

Wheat 1.24 0.48 0.006 0.012 

Field pea 1.64 0.41 0.017 0.017 

 

2.5.11.7 Impact assessment methods 

The impact assessment method chosen was the IPCC 2021 GWP 100, which estimates the infrared 

radiative forcing on a 100-year timeframe. As a sensitivity analysis, we also used the IPCC 2021 GWP 

500, which estimates the radiative forcing on a 500 year timeframe instead(IPCC, 2022). 

3. Results and discussion 

3.1 Life cycle inventory 

3.1.1 Canola 

Germany had the highest canola yields (3360 kg/ha), followed by France (3210 kg/ha), Canada 

(2145.2 kg/ha), and Saskatchewan (2118.8 kg/ha). Australia had the lowest (1387.5 kg/ha) (Table 38). 

Seed inputs were similar between regions, ranging from 0.001-0.003 kg/kg yield. Lime was only applied 

in Australia and Germany, ranging from 0.1-0.19 kg/kg. France and Germany had the highest N fertilizer 

application rates (0.145 and 0.14 kg/kg), and Saskatchewan and Australia had the lowest (0.057 and 

0.056 kg/kg). P fertilizer application rates were fairly similar, ranging from 0.02 kg/kg in Germany to 

0.031 kg/kg in Saskatchewan. K and S fertilizer rates were more variable, with K fertilizer application 

rates ranging from 0.00g kg/kg in Canada and Australia to 0.039 kg/kg in France, and S fertilizers ranging 

from 0.008 kg/kg in Australia to 0.042 kg/kg in Saskatchewan. France and Germany were the only 

countries with manure application to canola production. French canola received 0.334 kg/kg of pig 

manure and 0.101 kg/kg of poultry manure. German canola had a similar poultry manure application 

rate to France (0.09 kg/kg) and around a 3 times higher pig manure application rate than France (1.05 

kg/kg). Total pesticide active ingredient application rates were very similar, ranging from 0.001 kg/kg in 

Saskatchewan to 0.002 kg/kg in all other regions.  
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Irrigation energy was only used for Canadian, French and German canola production, ranging from 

0.007 MJ/kg in France to 0.05 MJ/kg in Germany. Australia had the highest energy use for field activities 

(1.791 MJ/kg), followed by Germany and France (1.21 MJ/kg), and Canada and Saskatchewan had the 

lowest (0.472 MJ/kg and 0.458 MJ/kg). Saskatchewan had the lowest post-harvest energy use (0.003 

MJ/kg), and Germany had the most (0.32 MJ/kg). All transportation distances were assumed to be the 

same (30 km for manure and 50 km for all other inputs) due to lack of region-specific data. 

Saskatchewan, Canada and Australia have much lower amounts of inputs transported to the lack of 

manure application, compared to France and Germany.  

Australia has the lowest N2O emissions (1.88x10-4 kg/kg), due to their relatively dry climate and lack 

of tillage for canola. France and Germany (0.002 kg/kg) have double the N2O emissions of Canada and 

Saskatchewan (0.001 kg/kg), due to higher N inputs, more field activities, and differences in soil and 

climate. Australia has the highest levels of field-level CO2 emissions (0.118 kg/kg) since they have the 

highest inputs of lime. Germany also has lime inputs and has the second highest field-level CO2 

emissions (0.09 kg/kg). Saskatchewan, Canada and France do not have lime inputs and thus have lower 

field-level CO2 emissions (0.03-0.045 kg/kg). Canadian and Saskatchewan soils are sequestering carbon (-

0.225 and -0.161 kg CO2/kg), while all other countries have net carbon emissions from soils. France and 

Germany have higher emissions (0.227 and 0.390 kg CO2/kg), and Australia has lower emissions (0.046 

kg CO2/kg). 

Table 38. Summary of life cycle inventory data for canola production 

 Saskatchewan Canada Australia France Germany 

Yield (kg/ha) 2118.8 2145.2 1387.5 3210 3360 

Seed (kg/kg) 0.003 0.003 0.002 0.001 0.001 

Lime (kg/kg) 0 0 0.190 0 0.10 

N fertilizers 
(kg/kg) 

0.057 0.091 0.056 0.145 0.14 

P fertilizers 
(kg/kg) 

0.031 0.030 0.029 0.027 0.02 

K fertilizers 
(kg/kg) 

0.009 0.006 0.006 0.039 0.06 

S fertilizers 
(kg/kg) 

0.042 0.015 0.008 0.003 0.01 

Pig manure 
(kg/kg) 

0 0 0 0.334 1.05 

Poultry 
manure 
(kg/kg) 

0 0 0 0.101 0.09 

Total pesticide 
AI (kg/kg) 

0.001 0.002 0.002 0.002 0.002 

Irrigation 
energy 
(MJ/kg) 

0 0.010 0 0.007 0.05 

Field activities 
energy 
(MJ/kg) 

0.458 0.472 1.791 1.209 1.21 
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 Saskatchewan Canada Australia France Germany 

Post-harvest 
energy 
(kWh/kg) 

0.003 0.186 0.050 0.152 0.32 

Transportation 
(kg*km/kg) 

7.081 7.204 14.483 24.506 51.58 

Field-level N2O 
emissions 
(kg/kg) 

0.001 0.001 1.882E-4 0.002 0.002 

Field-level CO2 
emissions 
(kg/kg) 

0.030 0.045 0.118 0.030 0.09 

Soil carbon 
change (kg 
CO2/kg) 

-0.225 -0.161 0.046 0.227 0.390 

 

3.1.2 Non-durum Wheat 

Similar to canola, Germany had the highest wheat grain yields (7360 kg/ha), followed closely by 

France (7090 kg/ha) (Table 39). Canada, the US and Saskatchewan had similar yields (3375, 3322, and 

2986 kg/ha, respectively), and Australia had the lowest (2042 kg/ha). In addition to the grain yield, 

wheat also has straw as a co-product, ranging from 0.057-0.123 kg/kg). There were no lime inputs to 

Saskatchewan and Canadian wheat production systems. Seed inputs were fairly similar between 

Saskatchewan, Canada, France and Germany, ranging from 0.021-0.033 kg/kg. The US had slightly higher 

seed inputs (0.047 kg/kg), and Australia had the highest seed inputs (0.075 kg/kg). Australia and the US 

had the highest lime application rates (0.196 kg/kg and 0.124 kg/kg) due to their relatively low yields. 

France and Germany had 0.056 and 0.054 kg/kg lime application. N fertilizer application rates ranged 

from 0.037 kg/kg in Australia to 0.065 kg/kg in France. France and Germany had relatively low P fertilizer 

application rates (0.005-0.006 kg/kg) compared to all other regions (0.013-0.026 kg/kg). K and S fertilizer 

application rates were somewhat similar between regions with K rates ranging from 0.003 kg/kg in 

Australia to 0.006 kg/kg in Canada, France, and the US. S fertilizer application rates ranged from 0.001 

kg/kg in France to 0.011 kg/kg in Saskatchewan. Saskatchewan wheat received no manure inputs. Pig 

manure application rates were the lowest in Australia (0.049 kg/kg), fairly similar in Canada, France, and 

the US (0.103-0.164 kg/kg), and highest in Germany (0.479 kg/kg). Poultry manure application rates 

were lowest in Canada and Australia (0.024-0.025 kg/kg), followed by France and Germany (0.042-0.046 

kg/kg), with the highest application rates in the US (0.115 kg/kg). Pesticide application rates were similar 

between regions, ranging from 0.0002-0.001 kg/kg.  

Irrigation was not performed in Saskatchewan. Where irrigation was performed, energy inputs were 

the lowest in Germany and the US (1.25x10-9-2.86x10-9 MJ/kg), followed by Canada and France (0.004 

and 0.002 MJ/kg), and Australia had the highest (0.015 MJ/kg). Australia and the US had the highest 

energy use for field activities (1.240 and 1.290 MJ/kg), followed by Canada (0.758 MJ/kg), France and 

Germany (0.558 and 0.565 MJ/kg), and Saskatchewan had the lowest (0.330 MJ/kg). Australia, France, 

Germany and the US all had the same post-harvest energy use (0.530 MJ/kg), as did Canada and 

Saskatchewan (0.003 MJ/kg). Like canola, all transportation distances were assumed to be 30 km for 
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manure and 50 km for all other inputs. Germany and the US had the most inputs transported to farm 

(23.519 ad 20.899 kg*km/kg), followed by Australia and France (15.631 and 14.056 kg*km/kg), and 

Canada and Saskatchewan (6.286 and 8.895 kg*km/kg). 

Australia had the lowest N2O emissions, due to their soil, climate, and management conditions 

(3.11x10-4 kg/kg). This was followed by the US (4.87x10-4 kg/kg), then Saskatchewan and Canada 

(6.07x10-4 and 6.57x10-4 kg/kg), and France and Germany had the highest emissions (7.98x10-4 and 

7.91x10-4 kg/kg). Saskatchewan, Canada, France and Germany had similar field-level CO2 emissions 

(0.020-0.038 kg/kg) and the US and Australia had higher emissions (0.072 and 0.109 kg/kg). 

Saskatchewan and Canadian soils had net carbon sequestration (-0.078 to -0.153 kg CO2/kg). All other 

soils had net CO2 emissions, ranging from 0.031 kg/kg in Australia to 0.178 kg/kg in Germany.  

Table 39. Summary of life cycle inventory data for wheat production 

 Saskatchewan Canada Australia France Germany 
United 

States 

Yield (kg/ha) 2986.2 3374.7 2042 7090 7360 3222.0 

Straw 
removed (kg 
DM/kg) 

0.123 0.123 0.110 0.081 0.057 0.123 

Seed (kg/kg) 0.032 0.033 0.075 0.022 0.021 0.047 

Lime (kg/kg) 0 0 0.196 0.056 0.054 0.124 

N fertilizers 
(kg/kg) 

0.056 0.042 0.037 0.065 0.058 0.051 

P fertilizers 
(kg/kg) 

0.022 0.013 0.026 0.006 0.005 0.017 

K fertilizers 
(kg/kg) 

0.005 0.006 0.003 0.006 0.005 0.006 

S fertilizers 
(kg/kg) 

0.011 0.007 0.005 0.001 0.005 0.003 

Pig manure 
(kg/kg) 

0 0.103 0.049 0.151 0.479 0.164 

Poultry 
manure 
(kg/kg) 

0 0.024 0.025 0.046 0.042 0.115 

Total pesticide 
AI (kg/kg) 

0.001 0.001 0.001 2.13E-04 4.38E-04 2.60E-04 

Irrigation 
energy 
(MJ/kg) 

0 0.004 0.015 0.002 1.25E-09 2.86E-09 

Field activities 
energy 
(MJ/kg) 

0.330 0.758 1.240 0.558 0.565 1.290 

Post-harvest 
energy 
(kWh/kg) 

0.003 0.003 0.530 0.530 0.530 0.530 
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 Saskatchewan Canada Australia France Germany 
United 

States 

Transportation 
(kg*km/kg) 

6.286 8.895 15.631 14.056 23.519 20.899 

Field-level N2O 
emissions 
(kg/kg) 

6.07E-04 6.57E-04 3.11E-04 7.98E-04 7.91E-04 4.87E-04 

Field-level CO2 
emissions 
(kg/kg) 

0.027 0.020 0.109 0.038 0.036 0.072 

Soil carbon 
change (kg 
CO2/kg) 

-0.153 -0.078 0.031 0.103 0.178 0.060 

 

3.1.3 Peas 

France and Germany had the highest yields of peas (3346 and 3200 kg/ha), followed by 

Saskatchewan and Canada (2235 and 2325 kg/ha), and the US had the lowest yield (1950 kg/ha) (Table 

40). Saskatchewan and Canada had the lowest seed inputs (1.02x10-4 and 1.58x10-4 kg/kg), followed by 

France and Germany (0.042 and 0.044 kg/kg), and the US had the highest (0.072 kg/kg). Due to a lack of 

data availability, all inoculant inputs were assumed to be the same as the Canadian application rates on 

a per hectare basis, therefore all variation was due to yield differences (0.001-0.002 kg/kg). There were 

no lime inputs to Saskatchewan and Canadian peas. France and Germany had similar lime application 

rates (0.12 and 0.125 kg/kg), and the US had a higher rate (0.205 kg/kg). French peas had no synthetic N 

fertilizer application, and all other regions had low application rates, ranging from 2.59x10-4 kg/kg in 

Canada to 1.88x10-2 kg/kg in Germany. All other synthetic fertilizer application rates were also fairly low. 

P fertilizer application rates ranged from 1.89x10-2 kg/kg in Canada to 7.19x10-2 in the US. K application 

rates ranged from 1.36x10-3 kg/kg in Saskatchewan to 6.32x10-2 in the US, and S application rates ranged 

from 0 kg/kg in France to 2.40x10-3 kg/kg in Canada. Manure was not applied in Saskatchewan or 

Canada. Pig manure application rates ranged from 0.272 kg/kg in the US to 1.101 kg/kg in Germany. 

Poultry manure application rates ranged from 0.097 kg/kg in France and Germany to 0.191 kg/kg in the 

US. Canada had the lowest application rate of total pesticide active ingredients (9.45x10-4 kg/kg), 

followed by Saskatchewan, France and Germany (0.0012-0.0016 kg/kg), and the US had the highest 

(0.002 kg/kg).  

France and the US were the only countries that irrigated their peas, using 0.037 and 0.064 MJ/kg, 

respectively. France, Germany, and the US had higher field activities fuel use (0.965-1.179 MJ/kg) than 

Canada and Saskatchewan (0.503-0.564 MJ/kg). Based on average moisture contents at harvest, German 

peas do not need to be dried. Canada had the lowest post-harvest drying energy use (8.10x10-4 MJ/kg), 

followed by Saskatchewan and the US (0.001 MJ/kg), and France had the highest (0.041 MJ/kg). As with 

canola and wheat, all transportation distances were assumed to be 30 km for manure inputs and 50 km 

for all other inputs. Since there was no manure application on Saskatchewan and Canadian peas, they 

had much lower transportation of inputs (1.26 and 1.30 kg*km/kg) compared to France (25.29 

kg*km/kg), the US (35.83 kg*km/kg), and Germany (49.71 kg*km/kg). 
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Saskatchewan peas had the lowest N2O emissions (6.80x10-4 kg/kg), due to their climate, soil and 

management conditions. Canada and France had similar N2O emissions (7.38x10-4 and 7.39x10-4 kg/kg), 

followed by the US (9.19x10-4 kg/kg), and Germany had the highest emissions (1.30x10-3 kg/kg). Since 

there was no lime applied to Saskatchewan or Canadian peas, their field-level CO2 emissions were much 

lower (2.47x10-4-2.98x10-4 kg/kg), compared to France, Germany, and the US (5.25x10-2-9.80x10-2 kg/kg). 

Canadian and Saskatchewan soils were the only regions that had net carbon sequestration (-0.162 to -

0.208 kg CO2/kg). All other regions had net CO2 emissions from soil carbon change, ranging from 0.099 

kg/kg in the US to 0.410 kg/kg in Germany. The N credit from N fixation was fairly similar across all 

regions (-0.004 to -0.006 kg ammonia/kg). 

Table 40. Summary of life cycle inventory data for dry pea production 

 Saskatchewan Canada France Germany United States 

Yield (kg/ha) 2235.14 2324.59 3346 3200 1950.281 

Seed (kg/kg) 1.02E-04 1.58E-04 0.042 0.044 0.072 

Inoculant 
(kg/kg) 

0.002 0.002 0.001 0.001 0.002 

Lime (kg/kg) 0 0 0.120 0.125 0.205 

N fertilizers 
(kg/kg) 

3.58E-04 2.59E-04 0 1.88E-02 1.38E-02 

P fertilizers 
(kg/kg) 

2.00E-02 1.89E-02 4.42E-02 3.52E-02 7.19E-02 

K fertilizers 
(kg/kg) 

1.36E-03 3.25E-03 4.81E-02 5.02E-02 6.32E-02 

S fertilizers 
(kg/kg) 

2.08E-03 2.40E-03 0 1.56E-03 1.33E-03 

Pig manure 
(kg/kg) 

0 0 0.320 1.101 0.272 

Poultry 
manure 
(kg/kg) 

0 0 0.097 0.097 0.191 

Total pesticide 
AI (kg/kg) 

1.22E-03 9.45E-04 1.62E-03 1.43E-03 0.002 

Irrigation 
energy 
(MJ/kg) 

0 0 0.037 0 0.064 

Field activities 
energy 
(MJ/kg) 

0.503 0.564 0.965 1.058 1.179 

Post-harvest 
energy 
(kWh/kg) 

1.30E-03 8.10E-04 0.041 0 0.001 

Transportation 
(kg*km/kg) 

1.26 1.30 25.29 49.71 35.83 

Field-level N2O 
emissions 
(kg/kg) 

6.80E-04 7.38E-04 7.39E-04 1.30E-03 9.19E-04 
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 Saskatchewan Canada France Germany United States 

Field-level CO2 
emissions 
(kg/kg) 

2.98E-04 2.47E-04 5.26E-02 5.89E-02 9.80E-02 

Soil carbon 
change (kg 
CO2/kg) 

-0.208 -0.162 0.217 0.410 0.099 

N credit (kg 
ammonia/kg) 

-0.004 -0.005 -0.006 -0.005 -0.006 

 

3.2 Life cycle impact assessment 

Overall, Saskatchewan and Canadian canola, wheat, and peas, have relatively low impacts compared 

to the same crops produced in other countries. Throughout all the results, including sensitivity analyses, 

either Saskatchewan or Canadian average crops had the lowest carbon footprint except for Australian 

canola, which had lower impacts of production due to lower field-level N2O emissions. However, when 

using the low end of the possible N2O emission values in the sensitivity analysis, Saskatchewan canola 

had lower impacts than Australian canola. Changing the impact assessment method from GWP 100 to 

GWP 500 also changed the results so that Saskatchewan canola had lower impacts than Australia. This 

was due to the reduction in the impact factor for N2O from the 100 to 500 year timeframe. Also, when 

the impacts of soil carbon changes were included in the carbon footprint totals, Saskatchewan and 

Canadian crops always had the lowest impacts since their soils have net carbon sequestration, and all 

other countries have net carbon losses.  

In general, field-level N2O emissions, fertilizer production, field activities, and soil carbon changes 

were the largest contributors to the carbon footprints of crop production. The specific contributions for 

each crop-region model are detailed below. 

3.2.1 Canola 

Best practice is to present the LCIA results and the soil carbon change impacts separately. Therefore, 

Figure 1 shows the carbon footprint results, excluding soil carbon changes, for canola production in 

Saskatchewan, Canada, Australia, France and Germany, broken down by the contribution of each major 

LCI data category. For Canada and Saskatchewan, the main contributors to the carbon footprint of 

canola production were fertilizer inputs (27%), and associated N2O emissions (57-59%). For 

Saskatchewan, all N2O emissions came from a combination of N applied in synthetic fertilizer and from 

crop residues, with ~55% from fertilizer and 45% from residues. There is no manure application for 

Canadian canola, and there are no net soil carbon losses on Saskatchewan soils that could lead to N 

losses. For the Canadian average, 0.01% of the N2O emissions came from mineralization N losses due to 

soil carbon change. The impacts of upstream fertilizer production were predominantly due to CO2 

emissions in the upstream production of ammonia to produce N fertilizers. CO2 from the combustion of 

diesel for field activities contributed 6% of the impacts. Canadian average canola production had 19% 

higher production than Saskatchewan, due to higher fertilizer inputs and associated N2O emissions. 

For Australia, fertilizer inputs accounted for 26% of the carbon footprint but N2O emissions were 

only 11%. This is due to the very low N2O emission factors and lack of volatilization in Australia due to its 

dry climate and lack of irrigation for canola. Approximately 64% of the N2O emissions were due to 
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fertilizer application, 26% from crop residues and 10% from soil carbon change. There was no manure 

application for Australian canola. Field activities accounted for 30% of Australian GHG emissions, which 

is much higher than the 5-6% for Canadian and Saskatchewan canola. This is because Australian canola 

requires higher levels of field activities, and because the overall impacts of production are lower, leading 

to the higher percent contribution from field activities. CO2 emissions from lime and urea application 

also accounted for 24% of emissions, compared to 5-6% for Canada and Saskatchewan. This is because 

lime fertilizer is applied in Australia and not in Canada. Overall, Australian canola had a 19% lower 

carbon footprint than Saskatchewan canola (not including SOC changes), due to the significantly lower 

N2O emissions. All differences between regions were statistically significant (as indicated by the separate 

letters above each bar on the graph). 

French and German canola production systems had quite similar impacts, with 24% of impacts 

coming from fertilizer inputs, and 55-58% coming from field-level N2O emissions. Fifty-one percent of 

N2O emissions from French canola were from synthetic N fertilizer, 6% from manure, 22% from crop 

residues, and 20% from soil carbon change. For Germany, 34% of N2O emissions came from synthetic 

fertilizer, 8% from manure, 14% from crop residue and 44% from soil carbon loss. Field activities 

accounted for 10% of the impacts of both French and German canola, and all other categories were 

<5%. French and German canola production had 57% and 66% higher impacts than canola production in 

Saskatchewan. These differences came from higher inputs of fertilizers and manure, and higher levels of 

field activities, despite the higher yields in Europe compared to Canada. There were also higher levels of 

N2O emissions due to a combination of the higher N inputs, as well as differences in soil, climate, and 

management conditions. 

Canadian soils are the only cropland soils that are sequestering carbon, due to a combination of soil, 

climate and management factors (Figure 2). The soil carbon sequestration estimates for Saskatchewan 

are higher than the national average, since there are some regions in Canada that do not sequester as 

much carbon, and some that have net CO2 emissions. All other countries have net CO2 emissions from 

their cropland soils. Germany has the highest levels of emissions, followed closely by France. This is due 

to the soil and climate conditions in these regions, as well as the intensity of field operations. Australia 

has much lower levels of CO2 emissions, likely due to differences in soil, climate and management 

factors. According to the Australian NIR (Commonwealth of Australia, 2022), the majority (~70%) of the 

estimate soil carbon losses from cropland are due to land converted to cropland, with the remainder 

from cropland remaining cropland. In the most recent Australian NIR, they indicated that croplands have 

a small net emission of carbon, however in previous years (2016 and 2018) they have had a small net 

sequestration. However, these inter-annual changes are small compared to the long-term trend of 

decreased carbon emissions (-95%) from Australian soils from 1990-2020, due to the adoption of no-till 

and reduced-till practices (Commonwealth of Australia, 2022). 

Including the impacts of soil carbon changes, Saskatchewan canola has the lowest life cycle GHG 

emissions of all regions studied (0.372 kg CO2e/kg). Australian and Canadian canola have similar overall 

impacts, at ~ 42% and 47% higher than Saskatchewan. Despite the lower impacts of production for 

Australian canola compared to Saskatchewan and Canadian canola, Australian agricultural soils have net 

CO2 emissions, whereas Saskatchewan and Canadian soils are sequestering carbon. French and German 

peas have much higher impacts (214% and 271% higher than Saskatchewan), since they have both 

higher impacts of production, and higher CO2 emissions from agricultural soils. Both including and 
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excluding the soil carbon changes, Saskatchewan canola has a lower carbon footprint (20-49% lower) 

than the weighted average of all countries included this analysis (Table 41). 

 

 

Figure 1. Contribution analysis of main LCI data categories to the overall carbon footprints (without soil 
carbon change) of canola produced in SK, CA, AU, FR and DE (kg CO2e per kg canola). 
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Figure 2. Contribution analysis of main LCI data categories to the overall carbon footprints (with soil 
carbon change) of canola produced in SK, CA, AU, FR and DE (kg CO2e per kg canola). The dashed line 
represents net total emissions in SK, accounting for negative impacts from soil carbon changes. 

 

Table 41. Global average carbon footprint values (with and without soil carbon change) compared to 
Saskatchewan carbon footprint values for canola production. 

 Global average Saskatchewan 

kg CO2e per kg canola (without 
soil carbon change) 

0.747 
 

0.597 
 
 

kg CO2e per kg canola (with soil 
carbon change) 

0.728 
 

0.372 

 

3.2.2 Non-durum wheat 

Figure 3 shows the LCIA results, without soil carbon change, for the production of 1 kg of non-durum 

wheat grain (allocated based on the mass relationship between grain and straw harvested) for 

Saskatchewan, Canada, Australia, France, Germany, and the United States. The results are broken down 

into the contributions from transportation, seed, fertilizer inputs, manure inputs, plant protection 

products, field activities, irrigation, post-harvest drying, and field-level CO2 and N2O emissions. For 

Canadian and Saskatchewan wheat, fertilizer inputs (22-31%) and associated field-level N2O emissions 
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(47-51%) were the highest contributors to the life cycle GHG emissions. Around 65% of the N2O 

emissions came from synthetic N fertilizer, and 35% from crop residues. For the Canadian average, <1% 

came from N mineralization due to soil carbon losses, due to small regional soil carbon losses in the 

Eastern provinces as well as British Columbia. There were no carbon losses in Saskatchewan soils, 

therefore no N2O emissions from this source. Field activities contributed 7-15% of the GHG emissions of 

Saskatchewan and Canadian wheat grain, and field-level CO2 emissions from the application of urea 

contributed 5-7%. All other inputs and activities contributed 5% or less. Overall, the Canadian average 

wheat production had 5% higher impacts than Saskatchewan. All other countries had significantly higher 

impacts of production than Saskatchewan.  

Australian wheat had 57% higher impacts than Saskatchewan wheat. The impacts of seed 

production were much higher in Australia than any other region (21%). This is due to the assumed land 

use change in Australia for the production of wheat seed, as included in Nemecek (2015). Australian 

peas also had higher levels of field activities than Canada and Saskatchewan, which contributed a similar 

proportion (17%), but were actually double the Canadian levels of energy use. Fertilizer inputs, post-

harvest energy use, and field-level CO2 and N2O emissions all had similar percentage contributions to the 

overall impacts of Australian wheat (10-18%). Seventy-nine percent of the N2O emissions for Australian 

wheat were due to synthetic N fertilizer application. Nine percent were from N mineralization due to soil 

carbon losses, 7% from crop residues, and 4% from manure inputs. All other inputs and activities 

contributed 1% or less to the overall carbon footprint of Australian wheat production. 

French and German wheat had very similar impacts, which were 33-38% higher than Saskatchewan 

wheat. This was due mostly to higher field-level N2O emissions, as well as higher post-harvest energy 

use. Field-level N2O emissions were the highest contributor to the overall impacts, contributing 47-48%. 

Fifty percent of French N2O emissions came from synthetic fertilizer application, 21% from soil carbon 

losses, 23% from crop residues and 6% from manure inputs. For German N2O emissions, the breakdown 

was 47% from soil carbon losses, 32% from fertilizer inputs, 8% from manure and 13% from crop 

residues. Fertilizer production contributed 18% of the impacts of French and German wheat production, 

post-harvest energy use contributed 13-15%, and field activities 9%. Field-level CO2 emissions from lime 

and urea application contributed 7% of impacts, and all other inputs and activities contributed 2% or 

less. 

Wheat production in the US had 51% higher impacts than Saskatchewan. This is due to higher levels 

of field activities, post-harvest energy use, and field-level CO2 emissions. Fertilizer production (22%) and 

field-level N2O emissions (27%) were the largest contributors to the carbon footprint of US wheat. Forty-

five percent of field-level N2O emissions for US wheat came from the application of synthetic N 

fertilizers, 34% came from crop residues, 11% from soil carbon loses, and 9% from manure. Field 

activities contributed 18% of the life cycle GHG emissions of US wheat production, field-level CO2 

emissions from lime and urea contributed 13%, and post-harvest energy use contributed 11%. All other 

impacts and activities contributed 6% or less. 

Saskatchewan soils had the highest levels of carbon sequestration per kg of wheat (Figure 4). Average 

Canadian soils are also sequestering carbon, albeit at a lower rate. All other regions have net carbon 

emissions from agricultural soils. Australia has the lowest levels of emissions, followed by the US, 

France, and Germany. When the impacts of soil carbon changes are included in the overall carbon 

footprint, Saskatchewan wheat production has the lowest impacts (0.214 kg CO2e/kg), followed by 



90 
 

Canadian wheat (41% higher). All other regions have much higher impacts than Saskatchewan, since 

they have higher life cycle impacts of production, and have net carbon emissions from soils. Of all other 

regions, Australian and France have the lowest impacts (176% of Saskatchewan impacts), followed by 

the United States (180%). German wheat has the highest combined impacts (203% of Saskatchewan). 

Either including or excluding soil carbon changes, Saskatchewan wheat grain production had lower 

impacts (28-61% lower) than the global production weighted average of all countries (Table 42). 

 

 

Figure 3. Contribution analysis of main LCI data categories to the overall carbon footprints (without soil 
carbon change) of wheat grain produced in SK, CA, AU, FR, DE, and US (kg CO2e per kg wheat grain), 
using mass allocation between harvested grain and straw. 
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Figure 4. Contribution analysis of main LCI data categories to the overall carbon footprints (with soil 
carbon changes) of wheat grain produced in SK, CA, AU, FR, DE, and US (kg CO2e per kg wheat grain), 
using mass allocation between harvested grain and straw. The dashed line represents net total 
emissions in SK, accounting for negative impacts from soil carbon changes. 

Table 42. Global average carbon footprint values (with and without soil carbon change) compared to 
Saskatchewan carbon footprint values for wheat grain production. 

 Global average Saskatchewan 

kg CO2e per kg wheat grain 
(without soil carbon change) 

0.497 
 

0.359 
 

kg CO2e per kg wheat grain 
(with soil carbon change) 

0.552 
 

0.214 
 

 

3.2.3 Peas 

Figure 5 shows the LCIA results, without soil carbon change, for the production of 1 kg of peas for 

Saskatchewan, Canada, France, Germany, and the United States. The results are broken down into the 

contributions from transportation, seed, fertilizer inputs, manure inputs, inoculant inputs, plant 

protection products, field activities, irrigation, post-harvest drying, field-level CO2 and N2O emissions, 

and N credit. Peas produced in Saskatchewan have the lowest carbon footprint, followed closely by the 

Canadian average (7% higher). The highest contributor to the carbon footprint of Saskatchewan and 

Canadian pea production is field-level N2O emissions (75-76%). Approximately 95% of the N2O emissions 
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are due to crop residue N inputs, and 5% from fertilizer N inputs, due to the high levels of crop residues 

and low synthetic fertilizer and manure application rates for peas. Field activities contributed 16-17% of 

the life cycle impacts for Canadian and Saskatchewan peas, and fertilizer production contributed 7-8%. 

The N credit, for reduced N fertilizer required for the next crop in rotation, contributed a 4% reduction 

in impacts. All other inputs and activities contributed 5% or less. 

All differences between regions are significantly different. French peas had 70% higher impacts than 

Saskatchewan peas, due to higher inputs of fertilizer and manure, higher levels of field activities, and 

higher field-level CO2 emissions due to the inclusion of lime application. Field-level N2O emissions are 

the highest contributor to the carbon footprint of French pea production (48%). Fifty-five percent of 

these N2O emissions are due to N mineralization from soil carbon loss. Twenty-nine percent are from 

crop residues, and 16% are from manure inputs. There were no synthetic N fertilizers applied to French 

peas. After N2O emissions, field activities are the next highest contributor to the carbon footprint of 

French peas (18%). Fertilizer inputs and field-level CO2 emissions from lime inputs contributed 12% each, 

and all other inputs and activities contributed 3% or less. The N credit contributed -3%. 

German peas had the highest carbon footprint of all regions (156% of Saskatchewan peas). This was 

due to higher field-level N2O emissions, as well as higher fertilizer inputs. Field-level N2O emissions 

contributed 56% of the life cycle GHG emissions. Seventy-one percent of these emissions came from soil 

carbon losses, 13% from manure, 9% from crop residues and 7% from synthetic N fertilizer. Fertilizer 

production, and field activities each contributed 13% to the carbon footprint of German peas, and field-

level CO2 emissions from lime and urea application contributed 9%. All other inputs contributed 4% or 

less. 

Pea production in the US had the second highest carbon footprint (after Germany), which was 137% 

of the Saskatchewan pea carbon footprint. This was due to high levels of field activities and field-level 

CO2 emissions, and relatively high field-level N2O emissions (but lower than Germany). Field-level N2O 

emissions were the highest contributors to the carbon footprint of US peas (43%). These emissions came 

from crop residues (69%), soil carbon losses (12%), synthetic N fertilizer (10%), and manure (10%). 

Fertilizer production and field-level CO2 emissions from lime and urea application each contributed 17% 

to the overall carbon footprint of US pea production. Field activities contributed 16%, and all other 

inputs and activities contributed 3% or less. 

Saskatchewan soils had the highest levels of soil carbon sequestration, followed by the Canadian 

average (Figure 6). All other countries had net carbon emissions from their agricultural soils. The US had 

the lowest levels of carbon emissions, followed by France, and Germany had the highest. When the 

impacts of soil carbon changes are combined with the LCIA results, Saskatchewan peas still have the 

lowest carbon footprint (0.04 kg CO2e/kg), followed by the Canadian average (160% higher). Since all 

other regions already had higher impacts of production, and have much higher impacts from soil carbon 

change, their combined impacts compared to Saskatchewan range from 1500% higher in France to 

2516% higher in Germany. When either including or excluding soil carbon changes, Saskatchewan peas 

had a lower carbon footprint (28-86% lower) than the global weighted average (Table 43). 
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Figure 5. Contribution analysis of main LCI data categories to the overall carbon footprints (without soil 
carbon changes) of peas produced in SK, CA, FR, DE, and US (kg CO2e per kg peas). 
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Figure 6. Contribution analysis of main LCI data categories to the overall carbon footprints (with soil 
carbon changes) of peas produced in SK, CA, FR, DE, and US (kg CO2e per kg peas). The dashed line 
represents net total emissions in SK, accounting for negative impacts from soil carbon changes. 

Table 43. Global average carbon footprint values (with and without soil carbon change) compared to 
Saskatchewan carbon footprint values for pea production. 

 Global average Saskatchewan 

kg CO2e per kg peas (without 
soil carbon change) 

0.347 
 

0.248 
 

kg CO2e per kg peas (with soil 
carbon change) 

0.295 
 

0.040 
 

 

3.3 Sensitivity analysis 

3.3.1 Cut-off criteria and exclusions 

Including the manure inputs that were previously excluded from the analysis for Saskatchewan, 

Canadian, and Australian canola, and the lime inputs for Saskatchewan and Canada increased the total 

carbon footprint values by 1-16% (Table 44). Including the previously excluded manure and lime inputs 

for Saskatchewan and Canadian peas, and the irrigation input for German peas increased the total 

carbon footprint values from 0-36% (Table 45). Despite these changes, the relative rankings (from 

lowest to highest carbon footprint) of the regions did not change for either crop. 

Table 44. Canola sensitivity analysis results for the inclusion of inputs excluded in the original results. 

kg 
CO2e/kg 

Fertilizer 

inputs 

Manure 

inputs 

Field-level 

CO2 

Field-level 

N2O 

Total 

without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New 

ranking 

(lowest to 

highest 

CF) 

SK 0.164 0.004 0.113 0.355 0.689 16% 2 2 

CA 0.195 0.004 0.127 0.402 0.799 13% 3 3 

AU 0.126 0.006 0.118 0.051 0.489 1% 1 1 

FR 0.226 0.013 0.030 0.547 0.940 0% 4 4 

DE 0.240 0.023 0.043 0.543 0.991 0% 5 5 

 

Table 45. Peas sensitivity analysis results for the inclusion of inputs excluded in the original results. 

kg 
CO2e/kg 

Fertilizer 

inputs 

Manure 

inputs 

Irrigation 

energy 

Field-level 

CO2 

Field-level 

N2O 

Total 

without 

soil 

carbon 

% 

change 

from 

original 

Original 

ranking 

(lowest 

to 

highest 

CF) 

New 

ranking 

(lowest 

to 

highest 

CF) 

SK 0.024 0.005 0 0.079 0.186 0.337 36% 1 1 

CA 0.022 0.005 0 0.076 0.202 0.350 32% 2 2 

FR 0.051 0.012 1.91E-03 0.053 0.202 0.422 0% 3 3 

DE 0.082 0.025 1.17E-06 0.059 0.354 0.636 0% 5 5 

US 0.098 0.018 7.36E-03 0.098 0.251 0.588 0% 4 4 
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3.3.2 Manure nutrient contents 

Using the same average manure nutrient contents for all countries changed the overall carbon 

footprint results between 0-5% across all crop-country combinations (Tables 46-48). This change altered 

both the manure input amounts, and the associated N2O emissions. Due to these small changes, the 

relative ranking of all countries from lowest to highest carbon footprint did not change. 

Table 46. Canola sensitivity analysis results for changed manure nutrient contents. 

kg CO2e/kg 
Manure 

inputs 

Field-level 

N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.000 0.355 0.597 0% 2 2 

CA 0.000 0.402 0.709 0% 3 3 

AU 0.000 0.051 0.483 0% 1 1 

FR 0.016 0.551 0.947 1% 4 4 

DE 0.034 0.560 1.019 3% 5 5 

 

Table 47. Wheat sensitivity analysis results for changed manure nutrient contents. 

kg 
CO2e/kg Manure inputs Field-level N2O 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.000 0.169 0.359 0% 1 1 

CA 0.003 0.194 0.377 0% 2 2 

AU 0.003 0.082 0.560 0% 6 6 

FR 0.007 0.234 0.495 0% 4 4 

DE 0.016 0.233 0.489 2% 3 3 

US 0.011 0.153 0.548 1% 5 5 

 

Table 48. Peas sensitivity analysis results for changed manure nutrient contents. 

kg CO2e/kg 
Manure 

inputs 

Field-level 

N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.186 0.248 0% 1 1 

CA 0 0.202 0.266 0% 2 2 

FR 0.016 0.207 0.431 2% 3 3 

DE 0.038 0.371 0.667 5% 5 5 

US 0.022 0.254 0.595 1% 4 4 

 

3.3.3 Manure allocation methods  

Changing from the 50:50 allocation method for the impacts of the production of the upstream 

synthetic fertilizers that provided the nutrients to the manure inputs, to the 100:0 and 0:100 allocation 

methods changed the results by 0-4% for all crops and countries (Tables 49-54). Allocating 0% of the 

impacts to the manure reduced impacts by 0-4% and allocating 100% of the impacts to manure 
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increased impacts by 0-4%. Again, due to these small changes, the relative ranking of the countries did 

not change. 

Table 49. Canola sensitivity analysis results for 0% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg CO2e/kg 
Manure 

inputs 

Total without 

soil carbon 

% change 

from original 

Original 

ranking (lowest 

to highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.597 0% 2 2 

CA 0 0.709 0% 3 3 

AU 0 0.483 0% 1 1 

FR 0 0.926 -1% 4 4 

DE 0 0.968 -2% 5 5 

 

Table 50. Wheat sensitivity analysis results for 0% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg CO2e/kg 
Manure 

inputs 

Total without 

soil carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.359 0% 1 1 

CA 0 0.374 -1% 2 2 

AU 0 0.558 -1% 6 6 

FR 0 0.488 -1% 4 4 

DE 0 0.467 -2% 3 3 

US 0 0.532 -2% 5 5 

 

Table 51. Peas sensitivity analysis results for 0% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg CO2e/kg 
Manure 

inputs 

Total without 

soil carbon 

% change 

from original 

Original 

ranking (lowest 

to highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.248 0% 1 1 

CA 0 0.266 0% 2 2 

FR 0 0.410 -3% 3 3 

DE 0 0.611 -4% 5 5 

US 0 0.570 -3% 4 4 

 

Table 52. Canola sensitivity analysis results for 100% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg CO2e/kg 
Manure 

inputs 

Total 

without soil 

carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.597 0% 2 2 

CA 0 0.709 0% 3 3 

AU 0 0.483 0% 1 1 

FR 0.026 0.953 1% 4 4 
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DE 0.047 1.014 2% 5 5 

 

Table 53. Wheat sensitivity analysis results for 100% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg 
CO2e/kg Manure inputs 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.359 0% 1 1 

CA 0.005 0.379 1% 2 2 

AU 0.008 0.566 1% 6 6 

FR 0.011 0.499 1% 4 4 

DE 0.020 0.487 2% 3 3 

US 0.021 0.553 2% 5 5 

 

Table 54. Peas sensitivity analysis results for 100% allocation of recycled synthetic fertilizer impacts to 
manure. 

kg CO2e/kg 
Manure 

inputs 

Total 

without soil 

carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0 0.248 0% 1 1 

CA 0 0.266 0% 2 2 

FR 0.025 0.434 3% 3 3 

DE 0.050 0.661 4% 5 5 

US 0.037 0.606 3% 4 4 

 

3.3.4 Wheat straw content and allocation methods 

When 0% of the impacts of wheat production were allocated to wheat straw (i.e., 100% of impacts 

were allocated to wheat grain, and no straw was assumed to be removed from the field) the wheat grain 

carbon footprint increased by 4-7%, depending on the original assumed allocation factors (Table 55). 

This did not change the relative rankings of the countries. When the largest possible percent of straw 

(85%) was assumed to be removed as a co-product and allocated to, the impacts of wheat grain 

decreased by 45-61% (Table 56), and the relative rankings of wheat from Australia, Germany and US 

changed. Saskatchewan had the lowest carbon footprint, followed by Canada, then the United States, 

France, and Australia. Germany had the highest carbon footprint. Application of a slightly altered straw 

removal rate of 21.1% rather than 24.1% assuming data from Statistics Canada( 2021b) are 

representative of crop residue baling practices in 2020 rather than 2021 had very minor (i.e., <1% 

change) impacts on the estimated carbon footprint values, and did not change the ranking of regions in 

terms of emissions (Table 57). Finally, when the variable rates of straw removal from the literature were 

used, the estimated impacts of wheat grain production decreased 30-48% (Table 58). Again, the relative 

rankings changed. With the variable straw removal rates, Saskatchewan had the lowest impacts, 

followed by Canada, the US, Germany, and France. Australia had the highest impacts. This shows the 

importance of transparency in allocation methods when conducting a carbon footprint analysis or life 

cycle assessment, as well as the need for principled approaches that are consistent with current 
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international methodological standards. In light of the potentially influential role of assumed wheat 

straw removal rates, development of accurate, country-specific data is also highly desirable.  

Table 55. Wheat sensitivity analysis for 0% wheat removal and allocation. 

kg CO2e/kg Field-level N2O 

Total without 

soil carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.182 0.382 7% 1 1 

CA 0.209 0.402 7% 2 2 

AU 0.088 0.592 5% 6 6 

FR 0.247 0.519 5% 4 4 

DE 0.237 0.497 4% 3 3 

US 0.157 0.574 6% 5 5 

 

Table 56. Wheat sensitivity analysis for 85% wheat removal and associated allocation. 

kg CO2e/kg 
Field-level 

N2O 

Total without 

soil carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.059 0.142 -60% 1 1 

CA 0.067 0.147 -61% 2 2 

AU 0.039 0.277 -51% 6 5 

FR 0.120 0.269 -45% 4 4 

DE 0.139 0.303 -36% 3 6 

US 0.055 0.227 -58% 5 3 

 

Table 57. Wheat straw sensitivity analysis assuming that crop residues were removed from 21.1% of 
land rather than 24.1% of land.  

kg CO2e/kg 
Field-level 

N2O 

Total without 

soil carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.170 0.362 0.81% 1 1 

CA 0.195 0.380 0.82% 2 2 

AU 0.083 0.566 0.66% 6 6 

FR 0.235 0.496 0.63% 4 4 

DE 0.228 0.480 0.52% 3 3 

US 0.148 0.546 0.73% 5 5 

 

Table 58. Wheat sensitivity analysis for variable wheat removal and associated allocation. 

kg CO2e/kg 
Field-level 

N2O 

Total without 

soil carbon 

% change 

from original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.105 0.233 -35% 1 2 

CA 0.094 0.195 -48% 2 1 

AU 0.081 0.375 -33% 6 6 

FR 0.155 0.338 -31% 4 5 
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DE 0.158 0.335 -30% 3 4 

US 0.078 0.305 -44% 5 3 

 

3.3.5 N2O emissions modelling 

Modelling the N2O emissions as the lowest possible values based on the ranges presented by each 

country resulted in overall reductions in the carbon footprint of canola ranging from a 6% reduction for 

Australia to a 53% reduction for France (Table 59). For wheat, using the lowest possible N2O values 

resulted in reductions ranging from 7% for the US to 43% for France (Table 60). For peas, the reductions 

ranged from 12% for the US to 60% for Saskatchewan and Canada (Table 61). When using these low N2O 

values, Saskatchewan canola had the lowest carbon footprints (excluding soil carbon), followed by 

France, Australia, and Canada. Germany had the highest. This is different from the original ranking, in 

which Australia was lowest, followed by Saskatchewan, Canada, France, and Germany. For wheat, the 

relative rankings did not change. Peas changed from Saskatchewan, Canada, France, United States, 

Germany, to Saskatchewan, Canada, France, Germany, United States. 

Using the highest N2O values gave increases in carbon footprint values for canola ranging from 7% in 

Australia to 90% in Germany (Table 62). For wheat, using the highest N2O values resulted in increases 

ranging from 7% in the US to 90% in Canada (Table 63). For peas, the increases ranged from 11% for the 

US to 91% for Germany (Table 64). When using these high N2O values, the relative rankings from lowest 

to highest for canola carbon footprint values (excluding soil carbon changes) did not change from the 

original ranking of Australia, Saskatchewan, Canada, France, Germany. For wheat, the rankings changed 

to Saskatchewan, United States, France, Canada, Australia, Germany. For peas, the rankings did not 

change from the original Saskatchewan, Canada, France, United States, Germany ranking. 

Table 59. Canola sensitivity analysis results for lowest N2O values in range. 

kg CO2e/kg Field-level N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.154 0.396 -33.68% 2 1 

CA 0.174 0.481 -32.19% 3 4 

AU 0.023 0.454 -5.95% 1 3 

FR 0.048 0.441 -53.09% 4 2 

DE 0.062 0.510 -48.52% 5 5 

 

Table 60. Wheat sensitivity analysis results for lowest N2O values in range. 

kg 
CO2e/kg Field-level N2O 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.081 0.271 -25% 1 1 

CA 0.093 0.276 -27% 2 2 

AU 0.037 0.515 -8% 6 6 

FR 0.021 0.280 -43% 4 4 

DE 0.026 0.276 -42% 3 3 

US 0.107 0.502 -7% 5 5 
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Table 61. Peas sensitivity analysis results for lowest N2O values in range. 

kg CO2e/kg Field-level N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.037 0.100315 -60% 1 1 

CA 0.041 0.105095 -60% 2 2 

FR 0.017 0.237784 -44% 3 3 

DE 0.038 0.320526 -50% 5 4 

US 0.183 0.520244 -12% 4 5 

 

Table 62. Canola sensitivity analysis results for highest N2O values in range. 

kg CO2e/kg Field-level N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.540 0.781 31% 2 2 

CA 0.612 0.919 30% 3 3 

AU 0.080 0.511 6% 1 1 

FR 1.057 1.450 54% 4 4 

DE 1.499 1.948 97% 5 5 

 

Table 63. Wheat sensitivity analysis results for highest N2O values in range. 

kg 
CO2e/kg Field-level N2O 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.382 0.572 60% 1 1 

CA 0.534 0.717 90% 2 4 

AU 0.129 0.608 8% 6 5 

FR 0.452 0.711 44% 4 3 

DE 0.623 0.874 83% 3 6 

US 0.185 0.580 7% 5 2 

 

Table 64. Peas sensitivity analysis results for highest N2O values in range. 

kg CO2e/kg Field-level N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.281 0.344 39% 1 1 

CA 0.307 0.372 40% 2 2 

FR 0.390 0.610 45% 3 3 

DE 0.930 1.212 91% 5 5 

US 0.316 0.653 11% 4 4 
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3.3.6 Crop residue yields and N contents 

Using the same average crop residue yield and N content for all countries changed the total carbon 

footprint of canola between -8 and 6% (Table 65). Due to these relatively small changes, the relative 

ranking of the countries did not change. For wheat, the total carbon footprint values changed by -3 to 

+5% and the relative rankings did not change (Table 66). For peas, the carbon footprint values changed 

between -12 to 28% (Table 67). This changed the relative rankings of France and the US, changing from 

the third and fourth lowest carbon footprints to the fourth and third, respectively. 

Table 65. Canola sensitivity analysis results for crop residue yields and N contents. 

kg 
CO2e/kg Field-level N2O 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.310 0.551 -8% 2 2 

CA 0.352 0.658 -7% 3 3 

AU 0.052 0.483 0% 1 1 

FR 0.582 0.974 4% 4 4 

DE 0.606 1.054 6% 5 5 

 

Table 66. Wheat sensitivity analysis results for crop residue yields and N contents. 

kg 
CO2e/kg Field-level N2O 

Total without 

soil carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.160 0.352 -2% 1 1 

CA 0.182 0.366 -3% 2 2 

AU 0.085 0.567 1% 6 6 

FR 0.241 0.501 1% 4 5 

DE 0.251 0.499 5% 3 3 

US 0.132 0.530 -2% 5 5 

 

Table 67. Peas sensitivity analysis results for crop residue yields and N contents. 

kg CO2e/kg Field-level N2O 

Total 

without soil 

carbon 

% change 

from 

original 

Original 

ranking 

(lowest to 

highest CF) 

New ranking 

(lowest to 

highest CF) 

SK 0.136 0.199 -20% 1 1 

CA 0.149 0.213 -20% 2 2 

FR 0.320 0.540 28% 3 4 

DE 0.480 0.763 20% 5 5 

US 0.181 0.518 -12% 4 3 

 

3.3.7 Impact assessment methods 

Using the GWP 500 impact assessment method instead of the GWP 100 changed the carbon 

footprint estimates for canola by -9% to -33% (Table 68). The decreases were mainly due to the 

differences in impact factors for N2O between the two methods. The original GWP 100 method has an 
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impact factor of 273 kg CO2e/kg N2O, and the GWP 500 has an impact factor of 130. The estimated 

impacts of the other inputs and activities also changed due to differences in impact factors for upstream 

N2O and other emissions, however these changes were small compared to the change in field-level N2O 

emissions. Since the impacts of Saskatchewan canola decreased more than Australian canola, 

Saskatchewan had the lowest carbon footprint estimate in this scenario, followed by Australia. All other 

relative rankings for canola remained unchanged. 

For wheat, the estimated carbon footprint values decreased by 6-30% (Table 69), and peas by 27-

40% (Table 70). Again, these differences were mainly due to the difference in impact factor for N2O. The 

relative rankings of wheat for Saskatchewan and Canada swapped from lowest and second lowest to 

second lowest and lowest, respectively. The relative rankings of the other countries did not change for 

wheat. For peas, the country with the highest carbon footprint changed from Germany to the US.
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Table 68. Canola sensitivity analysis results for GWP 500 impact assessment methods. 

kg 
CO2e/kg Transportation Seed 

Fertilizer 

inputs 

Manure 

inputs 

Plant 

protection 

Field 

activities Irrigation 

Post-

harvest 

Field-

level 

CO2 

Field-

level 

N2O 

Total 

without soil 

carbon 

% change 

from original 

Original 

ranking 

(lowest 

to 

highest 

CF) 

New 

ranking 

(lowest 

to 

highest 

CF) 

SK 0.001 0.004 0.150 0 0.007 0.036 0.000 0.002 0.030 0.169 0.399 -33.1% 2 1 

CA 0.002 0.005 0.175 0 0.012 0.038 0.001 0.011 0.045 0.192 0.479 -32.5% 3 3 

AU 0.003 0.003 0.116 0 0.021 0.143 0.000 0.013 0.118 0.024 0.441 -8.6% 1 2 

FR 0.005 0.001 0.210 0.014 0.012 0.096 0.000 0.003 0.030 0.260 0.633 -32.6% 4 4 

DE 0.011 0.002 0.223 0.022 0.014 0.097 0.007 0.008 0.043 0.258 0.685 -30.8% 5 5 

 

Table 69. Wheat sensitivity analysis results for GWP 500 impact assessment methods. 

kg 
CO2e
/kg Transportation Seed 

Fertilizer 

inputs 

Manure 

inputs 

Plant 

protection 

Field 

activities Irrigation 

Post-

harvest 

Field-

level 

CO2 

Field-

level 

N2O 

Total 

without 

soil 

carbon 

% 

change 

from 

original 

Original 

ranking 

(lowest 

to 

highest 

CF) 

New 

ranking 

(lowest 

to 

highest 

CF) 

SK 0.001 0.014 0.104 0.000 0.006 0.104 0.000 0.002 0.026 0.080 0.338 -6% 1 2 

CA 0.002 0.015 0.075 0.002 0.000 0.057 0.000 0.000 0.019 0.092 0.263 -30% 2 1 

AU 0.003 0.108 0.081 0.004 0.004 0.094 0.002 0.056 0.104 0.039 0.494 -12% 6 6 

FR 0.003 0.007 0.080 0.005 0.001 0.043 0.000 0.070 0.036 0.111 0.358 -28% 4 4 

DE 0.005 0.007 0.078 0.010 0.003 0.043 0.000 0.057 0.035 0.108 0.346 -28% 3 3 

US 0.004 0.025 0.103 0.009 0.002 0.098 0.000 0.057 0.068 0.070 0.436 -20% 5 5 
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Table 70. Peas sensitivity analysis results for GWP 500 impact assessment methods. 

kg 
CO2e/k
g 

Transportatio

n Seed 

Fertilize

r inputs 

Manur

e 

inputs 

Inoculan

t inputs 

Plant 

protectio

n 

Field 

activitie

s 

Irrigatio

n 

Post-

harves

t 

Field-

level 

CO2 

Field

-

level 

N2O 

N 

credi

t 

Total 

withou

t soil 

carbon 

% 

change 

from 

origina

l 

Origina

l 

ranking 

(lowest 

to 

highest 

CF) 

New 

rankin

g 

(lowes

t to 

highest 

CF) 

SK 2.60E-04 
1.274E

-05 0.018 0 0.001 0.011 0.040 0 0.001 
3.00E

-04 
0.08

9 
-

0.010 0.150 -40% 
1 1 

CA 2.700E-04 
1.455E

-05 0.018 0 0.001 0.008 0.045 0 
1.60E-

04 
2.50E

-04 
0.09

6 
-

0.011 0.159 -40% 
2 2 

FR 0.005 0.011 0.049 0.011 0.001 0.011 0.077 1.87E-03 0.006 0.053 
0.09

6 
-

0.013 0.309 -27% 
3 3 

DE 0.010 0.017 0.078 0.023 0.001 0.011 0.085 0 0 0.059 
0.16

9 
-

0.012 0.440 -31% 
5 4 

US 0.007 0.008 0.090 0.016 0.001 0.016 0.095 7.10E-03 
4.00E-

04 0.098 
0.12

0 
-

0.015 0.443 -25% 
4 5 
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3.4 Limitations of the analysis 

LCA has limitations. While the impacts of these limitations may be somewhat mitigated through 

performance of in-depth sensitivity analyses, as has been done here, some limitations remain. The most 

obvious of these is the use of secondary data sourced from LCI databases, published literature, and 

government and industry sources as the basis for the analyses. LCA is data intensive, and the robustness 

of models and associated results and interpretations are intrinsically linked to the quality of the data 

used in model development (Ciroth et al., 2016). While much of the data used in this analysis are of high 

quality, many data points were of relatively lower quality with respect to the completeness criteria, 

either due to small sample sizes, or a lack of reporting on the percentage of supply covered. This lack of 

reporting is, unfortunately, quite common in the LCA literature (Turner et al., 2020). Completeness 

scores could also be improved through the collection of primary data based on large, representative 

samples across industries. Doing so, however, would require significant effort and resources.  

An additional key limitation of LCA is related to the models and assumptions used for estimation of 

LCI data. These include those for estimation of field level emissions, manure nutrient inputs, crop 

residue yields, etc. While use of modeled values is necessary given the infeasibility of primary data 

collection, the potential biases that may be inherent to these models should not be ignored. The impact 

of these biases has been taken into account through the performance of uncertainty analysis as per best 

practices in the LCA field (Bamber et al., 2019). This limitation is particularly evident with regards to the 

assumptions made around amounts of straw removed as a co-product of wheat production systems. 

Wheat straw is commonly used as a bedding material (Smerchek and Smith, 2020; Yesufu et al., 2020) 

and as forage (Ates et al., 2017; Molavian et al., 2020) for livestock systems, as well as for production of 

second generation biofuels (Hasanly et al., 2018; Suardi et al., 2020). Harvest and removal of wheat 

straw residues is therefore likely dependent on regional market forces (i.e., demands for livestock 

bedding/forage and biofuel feedstocks). A more in-depth exploration of the removal of wheat straw 

from fields, and the resulting changes in associated allocation factors, would therefore require in-depth 

knowledge of regional markets, or data of sufficiently high quality characterizing the proportions of 

harvested wheat straw diverted to each possible use. Data describing the relative size of the livestock 

sectors across the different regions included in this analysis could be used in proxy to scale proportions 

of straw removed across each country, but this scaling would be based on the fallible assumption that 

demand for wheat straw is driven solely by the livestock sector in each region. For example, operating 

with this assumption, and scaling the amount of straw baled per kilogram of wheat produced linearly, 

results in the conclusion that, in the U.S., 5 times more wheat straw must be baled than is produced per 

kilogram of wheat, based on cattle inventories from Statistics Canada (Statistics Canada, 2022c) and 

FAOstat (FAOstat, 2021) In the future, it is clear that greater effort must be put into accounting for 

production of crop residues, as well as the proportion of residues that are harvested for use in other 

sectors.  

4. Conclusion 

Production of commodity field crops is economically important in Saskatchewan as well as in Canada 

as a whole. Field crops produced in Canada have substantial international market share, making 

increasingly important contributions to global food security (Caparas et al., 2021). Given increases in 

societal desires for sustainably produced foods (Mazzocchi et al., 2021; Okpiaifo et al., 2020; Tobi et al., 
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2019), it is necessary that food system managers and stakeholders develop an in-depth understanding 

of the GHG emissions associated with food production systems, including key hot spots along supply 

chains and the comparative impacts of food products, such that sustainability improvement measures 

may be implemented in order to promote net-positive outcomes.  

This analysis provides estimates of life cycle GHG emissions for canola, non-durum wheat, and field 

pea production in Saskatchewan and compares them with the emissions attributable to the same crops 

produced in Canada as a whole as well as in Australia, France, Germany, and the U.S. Saskatchewan and 

Canadian crop production systems compare favourably to their international counterparts, having the 

lowest and second lowest GHG emissions per kilogram of product, with few exceptions. The results 

generally exhibited a low degree of sensitivity to methodological choices made in the study. Key supply 

chain hotspots for all crop-region combinations included field level N2O emissions and fertilizer inputs. 

These may serve as foci for research into potential sustainability improvement strategies.   

While canola, non-durum wheat, and field peas represent an important portion of the Saskatchewan 

field crop sector, similar comparisons of other economically important crops should be considered in the 

future. These comparisons may help develop a deeper understanding of how the Saskatchewan field 

crop sector compares to international competitors, as well as opportunities for improvement.  
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Appendix 1. Detailed results for baseline analyses 

Table A 1 Detailed contribution analysis describing contributions to total GHG emissions (kg CO2e) per kilogram of canola produced in the 
baseline model. 

Region 

Transportation Seed 
Fertilizer 
inputs 

Manure 
inputs 

Plant 
protection 

Field 
activities Irrigation 

Post-
harvest 

Field-
level 
CO2 

Field-
level 
N2O 

Soil 
carbon 
change 

SK 0.002 0.005 0.159 0.000 0.007 0.037 0.000 0.002 0.030 0.355 -0.225 

CA 0.002 0.006 0.191 0.000 0.013 0.038 0.001 0.012 0.045 0.402 -0.161 

AU 0.003 0.004 0.126 0.000 0.023 0.145 0.000 0.013 0.118 0.051 0.046 

FR 0.005 0.001 0.226 0.013 0.015 0.098 0.000 0.003 0.030 0.547 0.227 

DE 0.011 0.002 0.240 0.023 0.015 0.098 0.008 0.009 0.043 0.543 0.390 

 

Table A 2 Detailed contribution analysis describing contributions to total GHG emissions (kg CO2e) per kilogram of wheat grain produced in the 
baseline model. 

Region 

Transportation Seed 
Fertilizer 
inputs 

Manure 
inputs 

Plant 
protection 

Field 
activities Irrigation 

Post-
harvest 

Field-
level 
CO2 

Field-
level 
N2O 

Soil 
carbon 
change 

SK 0.001 0.018 0.111 0.000 0.006 0.025 0.000 0.002 0.026 0.169 -0.145 

CA 0.002 0.019 0.081 0.002 0.000 0.058 0.000 0.000 0.019 0.194 -0.074 

AU 0.003 0.120 0.087 0.004 0.005 0.095 0.002 0.058 0.104 0.083 0.029 

FR 0.003 0.010 0.087 0.006 0.002 0.043 0.000 0.073 0.036 0.234 0.098 

DE 0.005 0.009 0.084 0.010 0.003 0.044 0.000 0.060 0.035 0.227 0.171 

US 0.004 0.032 0.118 0.010 0.002 0.099 0.000 0.062 0.068 0.147 0.057 
 

Table A 3 Detailed contribution analysis describing contributions to total GHG emissions (kg CO2e) per kilogram of peas produced in the baseline 
model. 

Regio
n 

Transportatio
n Seed 

Fertilize
r inputs 

Manur
e 
inputs 

Inoculan
t inputs 

Plant 
protectio
n 

Field 
activitie
s 

Irrigatio
n 

Post-
harvest 

Field-
level 
CO2 

Field
-
level 
N2O 

N 
credi
t 

Soil 
carbo
n 
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SK 2.70E-04 
1.35E
-05 0.019 0.000 0.001 0.011 0.041 0 0.001 

3.00E
-04 

0.18
6 

-
0.01
0 -0.208 

CA 2.70E-04 
1.56E
-05 0.019 0.000 0.001 0.009 0.046 0 

1.70E-
04 

2.50E
-04 

0.20
2 

-
0.01
1 -0.162 

FR 0.005 0.014 0.051 0.012 0.001 0.012 0.078 1.91E-03 0.006 0.05 
0.20
2 

-
0.01
3 0.217 

DE 0.011 0.021 0.082 0.025 0.001 0.011 0.086 
0.00E+0
0 

0.0000
0 0.06 

0.35
4 

-
0.01
3 0.410 

US 0.008 0.008 0.098 0.018 0.001 0.017 0.096 7.36E-03 
4.10E-
04 0.10 

0.25
1 

-
0.01
6 0.099 

 

 


